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Abstract: In this paperstronglimits on the accurag of real-world physical computationare
establishedTo derive theseresultsa non-Turing Machine(TM) formulationof physicalcomputa-
tion is used.Firstit is proventhattherecannotbe a physical computerC to which onecanpose
ary andall computationatasksconcerninghe physicaluniverse.Next it is proventhatno physi-
cal computerC cancorrectly carry out every computationataskin the subsetf suchtasksthat
couldpotentiallybe posedo C. This meansn particularthattherecannotbe a physicalcomputer
thatcanbe assuredf correctly“processingnformationfasterthanthe universedoes”.Because
thisresultholdsindependenof how or if thecomputeiis physically coupledto therestof theuni-
verse,it alsomeansthattherecannotexist aninfallible, general-purposebsenation apparatus,
nor aninfallible, general-purposeontrolapparatusTheseresultsdo not rely on systemghatare
infinite, and/ornon-classicaland/orobey chaoticdynamics.They alsohold evenif onecoulduse
aninfinitely fast,infinitely densecomputeywith computationapowersgreaterthanthatof a Tur-
ing Machine(TM). After derving theseresultsanalogue®f the TM Halting theoremarederied
for thenovel kind of computerconsideredn this paperasareresultsconcerninghe (im)possibil-
ity of certainkinds of errorcorrectingcodes.In addition,ananalogueof algorithmicinformation
compleity, “prediction complexity”, is elaboratedA task-independeriioundis derved on how
muchthe predictioncomplity of acomputationataskcandiffer for two differentreferenceuni-
versalphysicalcomputeraisedto solve thattask.Thisis analogougo the“encoding”boundgov-

erning how muchthe algorithminformation compleity of a TM calculationcandiffer for two



referencauniversalTMs. It is proventhateitherthe Hamiltonianof our universeproscribesa cer-
taintype of computationpr predictioncompleity is unique(unlike algorithmicinformationcom-
plexity). Finally, the implicationsof this analysisfor the issueof whetherthe universe“is” a

computer are briefly discussed.



INTRODUCTION

Recentlytherehasbeenheightenednterestin the relationshipbetweernphysicsandcomputa-
tion ([1-37]). This interestextendsfar beyond the topic of quantumcomputation.On the one
hand,physicshasbeenusedto investigatethe limits on computationmposedby operatingcom-
putersin thereal physical universe.Corversely therehasbeenspeculatiorconcerninghe limits
imposedon the physical universe(or at leastimposedon our modelsof the physicaluniverse)by
the need for the unérse to process information, as computers do.

To investigatethis secondssueonewould lik e to know whatfundamentadistinctions,if ary,
therearebetweernthe physical universeanda physical computer To addresghis issuethis paper
begins by establishingthat the universecannotcontaina computerto which one can poseary
arbitrarycomputationatask.Accordingly, this papergoeson to considercomputefsindexed sub-
setsof computationatasks whereall the membersof ary suchsubsetan be posedo the associ-
ated computer Restricting attentionto such subsets,it then proves that one cannotbuild a
computerthatcan“processinformationfasterthanthe universe”.More preciselyit is shovn that
onecannotbuild acomputerthatcan,for any physicalsystemgcorrectlypredictany aspecof that
systems future state before that future state actually occurs.

This asymmetryin computationakpeedsconstitutesa fundamentaldistinction betweenthe
universeandthe setof all physical computerslts existencecastsaninterestinglight ontheideas
of Fredkin,Landauerandothersconcerningwhetherthe universe®is” a computeywhetherthere
are“information-processingestrictions”on the laws of physics,etc.[11, 20]. In a certainsense,
theuniverseis morepowerful thanary information-processingystemconstructeadvithin it could
be.This resultcanalternatvely be viewed asarestrictionon the computationapower of the uni-
verse — theuniversecannotsupportthe existencewithin it acomputerthatcanprocessnforma-
tion as &st as it can.

To establishthis unpredictabilityresultthis paperconsidersa modelof physical computation

thatis actuallygenerakenoughto addresshe performancef othercomputationatasksaswell as



predictionof the future. In particular this modeldoesnot rely on temporalorderingsof events,
andthereforethe unpredictabilityresultsalsoestablisithatno computercaninfallibly predictthe

past (i.e., performretrodiction).Soarny memorysystemmustbefallible, i.e., the secondaw can-
not be usedto ensureperfectly faultlessmemory of the past. (Accordingly, the psychological
arrov of time is notinviolate[31].1) The unpredictabilityresultsarealsogenerakenoughto allow

arbitrary coupling of the computerandthe externaluniverse.So for examplethey alsoestablish
thattherecannotbe eitheraninfallible generalpurposeobsenation device nor aninfallible gen-
eral purposecontrol device. (The resultconcerningobsenation canbe viewed asan uncertainty
principle, one that does nowmlve quantum mechanics.)

No physically unrealizable systems, chaotic dynamics, or non-classicaldynamics are
exploited in this paper andthe resultshold even if onerestrictsattentionto predictingsystems
that containa finite numberof degreesof freedom.The resultsalsohold evenif the computeris
infinitely denseand/orinfinitely fast,evenif thecomputerasaninfinite amountof timeto dothe
calculation(eitherbeforeor afterthe eventbeingpredictedoccurs).Theresultsalsohold evenif
the computersinitial input explicitly containsthe correctvalueof the variableit is trying to pre-
dict/ obsere. More generallythey hold regardlesof the programrunningon the computer They
alsoholdfor bothanaloganddigital computationandwhetheror notthe computers programcan
beloadedinto its own input (i.e., regardlessof the computationaliniversalityof thecomputer)ln
factthey hold regardlessof the (Chomsly hierarcly) power of ones computey so long asit is
physically realizable.If it turnsout to be physically possibleto have computerswith computa-
tional power greaterthanthatof a Turing machine thenthe resultof this paperholdsfor sucha
computer As a particularexample,the resultsalsohold evenif the “computer”includesoneor
morehumanbeings.Soevenif Penroses musingon quantumgravity andintelligenceturnsoutto
bevalid — evenif humancomputationapowersarenot subjectto the restrictionsthatapplyto
ary of thememberof the Chomsly hierarcly — it is still truethathumanintelligenceis guaran-
teed to be wrong sometimes.

Resultsof suchgeneralityarederived by examiningthe underlyingissuesfrom the perspec-



tive of the computationacharacteiof real-world physical systemsn general ratherthanthat of
somesinglepreciselyspecified(andoften non-ptysically realizable)}computersystem.The asso-
ciatedmathematicgloesnot directly involve dynamicalsystemdik e Turing machinesRatherit
castscomputationin termsof partitionsof the spaceof possibleworldlines of the universe.For
example,to specifywhatinputa particularphysicalcomputerasat a particulartime is to specify
a particularsubsetof all possibleworldlinesof the universe;differentinputsto the computation
correspondo different (non-overlapping)such subsetsSimilar partitions specify outputsof a
physical computer Resultsconcerningthe (im)possibility of certainkinds of physical computa-
tion are derived by consideringthe relationshipbetweenthesekinds of partitions.In its being
definedin termsof suchpartitions,“physicalcomputation’involvesa structurethatneednot even
beinstantiatedn someparticularphysically localizedapparatusthe formal definition of a physi-
cal computeris generalenoughto alsoinclude more subtle non-localizeddynamicalprocesses
unfolding acrossthe entire universe.Computersn the corventional,space-timdocalizedsense
(e.g.,the box on your desk)are simply specialexamples,with lots of extra restrictionsthatturn
out to be unnecessary in the underlying mathematics.

Sectionl of this papergeneralizesrom particularinstance®f real-world physicalcomputers
that“try to reliably andaheadof time predictthe future stateof arny system”to motivatea broad
formal definitionof physicalcomputatiorin termsof partitions.To maintainmaximumbreadthof
theanalysiswe do notwantto restrictattentionto physicalcomputerghatare(or arenot) capable
of self-referenceAs analternatve, we startby restrictingattentionto universesontainingatleast
two physical computers(Putanothemway, our initial resultshold for ary singlecomputemot so
powerful asto precludethe possibleexistenceanywhereelsein the universeof anothercomputer
aspowerful asit is — which certainlydescribesany computerthathumanbeingscanever cre-
ate.)Sectionl alsoestablisheshatthereexist predictionproblemsthat cannoteven be posedto
oneof thosetwo physicalcomputersRestrictionson thesetof predictionproblemsareintroduced
accordingly

Section2 provesthat, even within sucha restrictedsetof predictionproblems,one cannot

have a pair of computersachof which can,reliably andaheadof time, predictthe future stateof



ary systemlt is alsoin Section2 thatthe impossibility of aninfallible general-purposeetrodic-
tion apparatuspbsenation apparatuspr control apparatuss establishedTheseresultsare all
derived throughwhat is essentiallya physical versionof a CretanLiar’'s paradox;they canbe
viewed as a physical analogueof Godels Incompletenes3heorem,involving two instanceof
the putatre computer rather than self-referential computers.

The mathematicandimpossibility resultsgoverning the partitionsunderlyingcomputation
bearmary parallelswith thatgoverningcorventionalcomputersciencemodels.Section3 expli-
catessomeof that mathematicaktructure,involving topicsrangingfrom error correctionto the
(lack of) transitvity of computationapredictabilityacrossmultiple distinctcomputersin particu-
lar, resultsare presenteadtoncerningphysical computationanalogue®f the mathematicof Tur-
ing machineseg.g.,“universal’ physical computersandHalting theoremdor physical computers.
In addition,ananalogueof algorithmicinformationcompleity, “prediction compleity”, is elab-
orated A task-independeritoundis derived on how muchthe predictioncompleity of acompu-
tationaltaskcandiffer for two differentreferenceuniversalphysical computersisedto solve that
task. This boundis similar to the “encoding” boundgoverninghow muchthe algorithmicinfor-
mationcompleity of a Turing machinecalculationcandiffer for two referenceuniversalTuring
machineslt is thenproventhatone of two casegnusthold. Oneis that the Hamiltonianof our
universeproscribesa certaintype of computation.The other possibility is that, unlike corven-
tional algorithmic information compleity, its physical computationanalogues unique,in that
there is one and onlyevsion of it that can be applicable throughout ouvense.

Section4 presentsa brief overview of how, the unpredictabilityresultsnotwithstandingthis
papers formalismmight be usedto gainfully view auniverseasa (single)computerTheimplica-
tions of this papers resultsundersuchan identificationare briefly discussedThis sectionthen
relatesthework presentedn this paperto previouswork in theliterature,andendswith a discus-
sion of future vork.

Throughouthis paperB ={0, 1}, [ is definedto bethe setof all realnumbers;™ is thelog-

ical and operatoy and ‘NOT’ is the logical not operatorappliedto B. To avoid proliferation of



symbols,often set-delineatingurly bracletswill be usedsurroundinga singlesymbol,in which
casethatsymbolis to takento beavariablewith theindicatedsetbeingthe setof all valuesof that
variable.Sofor example“{y}" refersto the setof all valuesof thevariabley. In additiono(A) is
the (potentiallytransfinite)cardinality of ary setA, and2” is the power setof A. u O U arethe
possiblestatesof the universe,and U is the spaceof allowed trajectorieshroughU (i.e., world-
linesof theuniverse).So U O Uis asingle~aluedmapfromt 0 O tou 0 U, with u, = U thestate
of theuniverseattime t. Note thatsincethe universeis microscopicallydeterministic(beit clas-
sicalor quantum-mechanical, we adoptthe mary-worldsinterpretatiorfor the latter case); for
ary t uniquelyspecifiesﬁ. Sometimegherewill be implicit constraintson 0. For example,we
will assumen discussingary particularcomputerthatthe space0 is restrictedto worldlines U
that containthat computer Fully formal definitionsand proofsarerelegatedto the appendix,so
thatthe maintext canconcentrat®n the fundamentatonceptsExtradiscussiorandexamplesof
thoseconceptghatwould be too distractingin the maintext arealsopresentedn the appendix.

An earlier analysis addressing some of the issues considered in this paper can be found in [33].

|. A DEFINITION OF WHA T IT MEANS T O “PREDICT THE FUTURE”

i) Definition of a Physical Computer

For the purpose®f this paperaphysicalcomputemwill “predictthe stateof a systemaheadf
time” if thecomputeris a generalemulatorof the physicaldynamicsof sucha systemanemula-
tor that operatedasterthanthat dynamics.So given sometime T > 0, and given somedesired
informationconcerninghe stateof somesystemat T, our goalis to have the computeroutputthat
desirednformationbefore time T. To thatendwe allow the computerto be“initialized” attime 0,
with different“input”, dependingnthevalueof T, whatinformationis desired perhapsnforma-
tion about the current state of the state whose future is being predicted, etc.

To make this concretelet a be a characteristiof the stateof the physicaluniverseattime T.



We indicatea specificatiorthatwe wish to know a asa question g [ Q. Soq sayswhata is for
ary stateof theuniverseattimeT, i.e.,q is a single-\aluedmappingfrom the stateof theuniverse
at T to amnswer a.

Since U fixes ur and(for a deterministicuniverse)vice-versa,we cangeneralizethis by dis-
pensingwith specificatiorof T. In otherwords,we canrecastary g asary single-\aluedmapping
from U toa. So q fves a partition wer the spacdaAJ, and aw pair @, q) delineates agen in 0.

In generalthespacg a} of potentialanswerf theuniverse(i.e., the setof partitionelement
labels)canchangedependingon g, the questionconcerninghe universe(i.e., the partition). This
meansthat we needto concernoursehes not just with the relation betweencomputers’answer
values,but alsowith therelationbetweerthe associatedpace®f possiblevalues(e.g.,the num-
ber1 is both an elementof the spaceB andof the space{1,4,5}, two caseghat mustbe distin-
guished.)We will write the space{a} as A(gq) whenwe needto indicateits dependencen
g explicitly. As muchaspossible the extra compleity associatedvith keepingtrack of A(q) is
relegated to the fully formal analysis in the appendix.

Withouttheaccompawing g, avalueof a, by itself, is meaninglessSowe mustknow whatq
we areansweringwhenwe readthe computers output. Accordingly, we want the outputof our
computerto give aquestiong togethemwith anassociategredictionfor a. Soour computers out-
put providesa delineationof a subragion of U [ U; thosel suchthatq( U) = a. It providesmore
structurethanjust thatthough,e.g.,two differentoutputscanhave the sameanswereventhough
they delineate dikerent rgions (due to hang different questions).

Very oftenthe question— amappingfrom answergo associatedetsof possiblestateof the
realworld — is only storedin a humanusers memory In this casethat aspectof the humanis
implicitly partof the computer An exampleis wheresomeparticularpatternof bits in anelec-
tronic workstationneedsto be “interpreted”’by a humanto sene asa predictionconcerningthe
physical unverse.

Finally, choosesomerealnumbert, whereO < 1 < T. Ourgoalis thatfor ary q I Q thereis an

associatedhnitial “input” stateof the computerat time O which ensureghat at time T our com-



puters outputis a correctpredictionfor a, i.e., which ensureshatfor the U of theuniverseg( u)
=aq.

Notethatdespitethe nomenclaturea “question/ answer’pair is not a premiseandassociated
conclusion,in the senseof an if-then statementRatherit is just a conclusion.The associated
premise (i.e., the if clause) is encoded in the input.

Now considerin moredetaila conventionalcomputerthatconsistf a fixed physicaldynam-
ical system.Togethemwith thatsystemwe have a pair of mappingsy which someof thatsystems
obsenable degreesof freedomare interpretedas (perhapsbinary) “inputs”, and someas “out-
puts”. Theinput andoutputdegreesof freedomcanoverlap,andmayevenbeidentical.Sincethe
computerexistsin the physicaluniverseits stateatary moment is specifiedoy u;. Thereforeboth
the interpretationof someof the computers degreesof freedomas “inputs” and someas “out-
puts” are single-waluedmappingsfrom u [0 U to a spaceof inputsand of outputs,respectrely.
With the input time 0 and outputtime T implicit, we canrecastthe domainsof thosemappings
aso rather than U.

All of this holdswhetherthe computationof outputsfrom inputs proceedsn a “digital” or
“analog”fashion.Theonly restrictionwill bethatwe areinterestedn falsifiableratherthanprob-
abilistic predictions.This restrictionwill oftenbe metevenif the systembeingpredictedis sto-
chasticandthe preciseaspeciwf it we're predictingis a function of the associatedlistributions.
For example,whetherthetemperaturef a particularsystemfalls within a certainrangeat a par-
ticulartime is afalsifiableprediction.(SeealsoEx. 1 belown.) In ary casethe extensionto having
thecomputers outputbe a probability distributionis fairly straight-forvard— seethediscussion

just before Thm. 2.

Example 1 (conventional prediction of the future): Saythat our universecontainsa systemS
externalto our computeithatis closedin thetimeinterval [0, T], andlet u bethevaluesof theele-
mentsof a setof canonicalvariablesdescribingthe universe.a is thet = T valuesof the compo-

nentsof u thatconcernS, measurean somefinite grid G( Ut ). q is this definition of a with G
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andthelike fully specified(Soq is a partitionof the spaceof possibleut, anda is anelementof

thatpartition.) Q is a setof suchq'’s, differing in G, whoseassociate@nswerour computercan
(we hope)predictcorrectly By determinismunderthe corventionthatwe areinterestedn ques-
tions concerningthe t = T stateof the universe,we canreplaceary grid G( Ut ) with a grid

G(0).

Theinputto the computeris implicitly reflectedn its t = 0 physical state,asour interpretatiorof

that state.In this example(thoughnot necessarilyn general) thatinput specifieswhat question
we wantansweredij.e., which g andassociated we areinterestedn. It alsodelineateone of

severalregionsR [ LAJ eachof which, intuitively, givesthet = 0 stateof S andS’s Hamiltonian.
ThroughouteachsuchR, the systemS is closedfrom the restof the universeduringt [J [0, T].

Sincethe preciseR delineatedspecifiesa setof possiblevaluesof ug in full, notjustof S’'st =0

state,it is an elementof a (perhapsrregular) finite precisiongrid over LAJ G'. If, for someR,

q( U) hasthesamevaluefor all (i 0 R, thenthisinput R uniquelyspecifiesvhata is for ary asso-
ciated{. If this is not the case thenthe R input to the computerdoesnot suffice to answerques-
tion g. Sofor ary g andregion R both of which canbe specifiedin the computers input, R must
be a subset of ag®n d'(a) for somea.

Implicit in this definitionis somemeandor correctlygettingthe informationof the valueR into

the computers input. In practice,this is often doneby having had the computercoupledto S
sometimebeforetime 0. As analternatve, ratherthanspecifyR in the input, we could have the
input containa “pointer” telling the computemwhereto look to gettheinformationR. (Theanaly-
sis of this paper holds no mattemhthe computer gns access to R.)

In practicetheinput, giving R, g, andT, is anelementf a partitionover an“input section”of our
computerin suchacasetheinputis itself anelementof afinite precisiongrid overUg, G"( Ug ).

So an element of G" specifies an element of G (namely g) and element of G' (namely R).

As usualary G"( Ug ) canbe re-expressechsa grid G"( LAJ ), underthe corventionthatwe are
interestedn inputsimposedonthet = O stateof thecomputerNotethatif initializationwereto be

atatimet # 0, it would correspondo a differentgrid G"( LAJ ), in general sincethe valuesof the
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computers input dgrees of freedom mayawy in time.

Givenits input, the computer(triesto) form its predictionfor a by first runningthe laws of phys-
ics on aug having the specifiedvalueasmeasurean G', accordingto the specifiedHamiltonian,
upto the specifiedtime T. The computerthenappliesq(.) to theresult.Finally, it ensureghatthis
predictionfor a is in its outputsectionat time 1. More precisely thereis a fourth finite precision
grid G™ over U, definedby the stateof thecomputers outputsectionattime t. Thecomputeruses
thatgrid to “write out” (whatis interpretedas)its predictionfor which regionin U the universe
will bein atT, thatpredictionbeingformally equialentto a predictionof aregionin 0. Thegoal
is to hae it do this, with the correclue ofa, by timet < T.

SinceG™( U; ) inducesagrid over LAJ G"( lAJ ), we candispensavith the“time 1 < T” stipulation;
the goalis simply to have the universebe in the elementof G™( U ) associatedvith the correct
valueof a. As with changingthetime of input, changingthetime 1 of outputwill changehegrid
G™( LAJ ), in general.

Consideragain the casewherethereis in facta correctprediction,i.e.,whereR is indeeda subset
of the region q1(a) for somea. For this case formally speaking“all the computerhasto do” in
making its predictionis take the region R and questionq delineatedn its input and recognize
which region in the partition g containstheregion R. Thenit mustoutputthe label of thatregion
in g ontoits output.In practicethough,q andR areusually“encoded’differently, andthe com-
putermust“translate”betweerthoseencodinggo recognizewhich region g *(a) containsR; this
translation constitutes the “computation”.

Notethatall of this holdsevenif S’sdynamicdgs stochasticand/orS’s stateis never deterministi-

cally fixed to greater precision that that of G'.

Generalizingheseconsiderationsye definea computersinput to beamappingX(.) from U
0Uto aspaceof inputs,{x}. Intuitively, it is a partition of 0 (seetheappendix) Sofor example
“Initialization” of acomputerascorventionallyconceved,which setsthet = 0 stateof a physical

systemunderlyingthe computeris simply a specialcase(In thatspecialcase the valuetaken by
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the input mappingdiffersfor U and U' if thet = 0 stateof the computerinput portion of the uni-
verse asspecifiedoy U, differsfrom thet = 0 stateof the computerinput portion of the universe
as specifiedby U'.) Similarly, we candefinea computers output to be a mappingY(.) from U
0Uto aspaceof outputs{y}. In suchanoutputpartition,theset{y} consistof all pairs{y , U Q,
Ya U A(yg)}, for someQ andassociated\(.). We saythatyy, is the “questionposedto the com-
puter”, and y is “the computes answer”.

A physical computer thenis simply thedoubleof aninput partitionandanassociate@utput
partition. As consideredn this paper all that computationamountsto is the delineationof the
logical implicationsfor which element(spf the outputpartition contain G giventhata particular
providedinput partition elementcontainsu. We areinterestedn whetherthe elementof the out-
put partition inducedby a particularinput correctly describeghe universe,asrestrictedby that
input. Soin particular we arenot consideringcounterfactual“computation”involving premises
that conflict with the actual state of thewerse.

Thedefinitionof a physicalcomputerpresentedhereis far broaderthancorventionalcomput-

ers that wark by processes l&that outlined in Ex. 1, as the folllng discussionlicates:

Example 1 continued: The definition of a physical computerdoesnot require that an input

alwaysimplies a uniqueoutput,asin Ex. 1. In addition,the computerin Ex. 1 hasthe laws of

physics explicitly built into its “program”. But our definition allows arbitrary “programs”. Our

definitionalsoallows otherkinds of informationinput to the computerbesideghatof Ex. 1. Fur-

thermorewe will only needto requirethattherebe some input to the computerthat, by accident
or by design,inducesthe correctoutput. This meanswe do not even requirethatthe computers

initial statex “accuratelydescribes’thet = 0 externaluniversein ary meaningfulsense(Our gen-
eralizationof Ex. 1 preseresanaloguesf thegridsG (in Q(.)), G" (in X(.)) andG™ (in Y(.)), but

not of the grid G".)

In fact,sincethe partition X(.) canreflectany attribute of U, it neednoteveninvolvethet = 0 state

of the physical computerIn otherwords,aswe usethe termshere,the computers “input” need



not be specifiedin somet = 0 stateof a physical device. Indeed,our definition doesnot even

explicitly delineatethe particularphysical systemwithin the universethat we identify with the
computer (A physical computeris simply an input partition togetherwith an output partition.)
This meanswe caneven chooseto have the entire universe“be the computer’(seeSect.4). In

addition, our definition doesnot enforcehaving inputsbe “set” beforeoutputsare“read” in ary

sense. Itis only concerned with the entiidlines of the unierse.

As anotherexampleof the freedomto extendEx. 1, notethatin practicewe maywantto physi-

cally coupleour computerto the externaluniverse for examplevia anobsenation apparatushat
initializesthe computers inputssothatthey reflectinformationaboutthe systembeingpredicted.
Sucha couplingwould bereflectedn U. If we wish though,we canexploit thefreedomin its def-

inition to modify the input mapping,in sucha way thatit too directly reflectsthis kind of cou-
pling. For example, under the proposedmodification, if we want the input section of the
computers underlyingphysicalsystento beabit b; thatequalghet = -1 stateof somebit b, con-
cerningthe externaluniverse thenwe couldhave X( U) = X(b1(ug), bo(u.1)) = by (ug) if by(ug) =

b,(u.;), andhave it equala special“input error” value otherwise If we do have a physical cou-
pling mechanismandif thatmechanisnis reliable— somethingeflectedn U— thenthis third

settingwill never occur andwe canignoreit. However useof this modified X allows usto avoid

explicitly identifying sucha mechanismand simply presumaits existence.So long asthe third

settingnever occurs,we cananalyzethe systemas though it had sucha (reliable) physical cou-
pling mechanism.

We canalsomodify Ex. 1 in otherwaysthatdo notinvolve input. For example,we canhave S be
open(or perhapsvenbethe entireuniverse) We canalsohave the computerobsene the system
beingpredictedafter initialization (sothatthatinitialization only senesto specifywhatshouldbe
obsered). This is oneof the majorreasonsvhy we do notrequirethatthe valuex uniquelyfixes
Y o U), to not precludethe possibility of Yo beingbasedon obsenationsof the externalworld

thatoccurafterthe settingof the computers input. (Otherreasongor not having x fix y4 arisein

the context of weak predictability; seethe discussionin the appendixprecedingEx. 2.) Other
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examplesof how to modify Ex. 1 arepresentedelown in the discussiorof retrodictionandcon-

trol.

We will sometimedind it usefulto considera copy of a particularcomputerC = (X, Y). This
is ary computerC' = (X', Y') where{x} ={x}, {Y'} ={Y}, andthe (set-alued)functionof all
outputsthatare possiblegiven a particularinput is the samefor both computersin otherwords,
even thoughthe functionsX'(.) and Y'(.) may differ from X(.) andY(.) respectrely, the logical
implicationsrelatingvaluesof x' andY"' arethe sameasthoserelatingvaluesx andY. So both
computerhave the sameinput-outputmapping.As a particularexample,if a scientistata partic-
ulartime (i.e.,acomputer)C in somespaceLAJ is transformednto acopy C'in someLAJ', thereis
no way that(s)hecanascertairthatthattransformatiornasoccurred.Thetwo scientistanterpret
theirinput asthe samequestionandin responserovide the sameanswer(whetherthatanswelis

generated via prediction and/or obsdion — see the discussion bgldhm. 2).

Example 1 continued: Consideragain the computerin Ex. 1. Recallthatif theinitialization time
0, questiontime T, and/oroutputtime T are changedthenin generalthe partitionsX and/orY
may change Soin particulay thetime-translatedersionof a computerC differsfrom C, in gen-
eral.Howeverthe“time-translatedrersionof C” is acopy of C (or atleastit makessensdo define
thetermthatway, solong asthelaws of physicsaretime-translationnvariant).Similarly, a spa-
tially-translatedversionof C is only a copy of C in generalratherthanidentically equalto C. So
formally speakingthe sequenc®f computationghe box on your deskmakesover a periodof a

month is a set of pisical computers, all copies of one anotlagplied to the same.

ii) Intelligible computation and distinguishable computers
Considera corventional physical computey consistingof an underlying physical system
whoset = 0 statesetsX( U) andwhosestateattime T setsY( U), asin Ex. 1. We wishto analyze

whether the physical systemunderlying that computer can calculate the future sufficiently
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quickly. In doingso,we do notwantto allow ary of the“computationaload” of thecalculationto
be*“hidden”in themappingsX(.) andY(.) by whichwe interprettheunderlyingphysicalsystems
state therebylesseninghe computationaload on thatunderlyingphysical system Stateddiffer-
ently, we wish boththeinputandthe outputcorrespondingo ary stateof theunderlyingphysical
systemto be “immediatelyandreadily intelligible”, ratherthanrequiringnon-trvial subsequent
computingbeforeit canbeinterpreted As will beseenin our formalizationof this requirementit
is equivalentto stipulatingthat our computerbe flexible enoughthatthereareno restrictionson
the possible questions one can pose to it.

Oneway to formalizethis intelligibility constraintwould entailimposingcapabilitiesfor self-
referenceonto our computer This hasthe major disadwantageof restrictingthe setof physical
computersinderconsiderationAs analternatve, to formalizethe notionthata computersinputs
andoutputsbe“intelligible”, herewe considemuniverseshaving anothercomputemwhich cancon-
siderthefirst one.We thenrequirethatthatsecondccomputetbe ableto directly posebinary ques-
tions about whetherthe first computers prediction correctly correspondgo reality, without
relying on ary intervening “translational” computerto interpretthat first computer (Note that
nothingis being said aboutwhethersucha questioncan be correctly answered by the second
computey simply whetherit canbe posed to thatcomputer) Sowe wish to be ableto askif that
outputis oneparticularvalue,whetherit is anothermparticularvalue,whetherit is oneof a certain
set of values,etc. Intuitively, this meansthat the set Q for the secondcomputermust contain
binaryfunctionsof Y(.) of thefirst computerFinally, we alsorequirethatthe seconccomputerbe
similarly intelligible to the first one.

Thesetwo requirement&rehow we imposethe intuitive requirementhatboth computerse
“readily intelligible” as predictionsconcerningreality; they must be readily intelligible and
checkablego each other. More precisely defineanintelligibility function of any O-partitionnto
be a binary-valuedfunction of the elementsof that partition. (We call a setof suchfunctionsan
intelligibility set.) If thesetof questionsve canposeto acomputerC includesall suchfunctions,

we saythattis intelligible to C. For sucha case,C canhave posedary questionconcerninghe
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universeas measuredn 1t This flexibility in C ensureghat C’s output partition isn’'t “rigged
aheadof time” in favor of someparticularquestionconcerningrt. The obvious modificationsare
assumed if we talk abomtbeing intelligible to C “with respect to some intelligibility set4".

A problemwith this definition of intelligibility is thatone canprove therecannotbe a com-
puterto which one caneven poseall possiblequestionsconcerningthe physical world. (This is
establishedormally asThm. 1 in theappendix.)Theproblemarisesvhenwe try to poseintelligi-
bility functionsconcerninghe computerC’s outputpartitionto C itself. Intuitively, it is not possi-
ble for thesetof C’s questiorpartitionsto includethe (larger) setof all binary-valuedfunctionsof
those patrtitions.

To circumwent this problem,from now on we implicitly restrictary intelligibility function
concerningan outputpartitionY to be question-independent, i.e., to not dependon the precise
guestionencodedn y, only on the answercomponentintuitively, restrictingoursehesto these
kinds of intelligibility functionsmeanswe areonly requiringthatthe predictedpartitionlabel of
onephysical computerbe directly readableon the othercomputers input, not thatthe full parti-
tion of the first computers questionalsobe directly readable Giventhe restrictionto suchques-
tion-independentntelligibility functions, we say that two physical computersC! and C? are
mutually intelligible if the output partition of €is intelligible to ¢ and vice-ersa.

Formally speaking,to make surethat the rangesof intelligibility functions matchup with
thoseof outputpartitionswhenworking with question-independenttelligibility functions,often
we shouldconsiderthe full predictionpartition, Y ,( 1) = (A(Y ¢( U), Y4( U)), ratherthanjust
Y,( U). For example,this is the casein the formal definitionsof weakandstrongpredictability
(seethe appendix) For pedagogicasimplicity though,we will oftenjustreferto the“computers
answer”or the “computers prediction” rather than explicitly statewhetherwe meanY . As
always, such formal concerns are dealt with in full in the appendix.

Finally, our unpredictabilityresultswill rely on our two physical computersbeing distinct
from oneanotherThey mustnot be sointertwinedthathow we caninitialize oneof themis deter-

minedby how we initialize the othet More formally, just aswe requirethatall input valuesx [
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{x} arephysically realizablestatesof a single physical computey so all pairsof the two com-
puter’s inputs valuesmust be physically realizablestatesof the two physical computersWhen
thisis the casewe saythatthe computersarepairwise (input) distinguishable. Whenthis s the
casefor eachpair of a setof computersyve saythatthe setis pairwise-distinguishablgndwhen
it is possibleto have ary joint combinationof theinputvaluesof all memberf thesetwe saywe

have full distinguishability for that set.

iii) Predictable computation

We cannow formalize the conceptof a physical computers “making a correctprediction”
concerninganothercomputers future state We saythata O-partition Tis weakly predictable to
C if two conditionshold. First, Tt mustbeintelligible to C. Secondfor every intelligibility func-
tion concerningr, f, Ox [ {x} thatweakly inducesf, i.e.,avaluex suchthatX( ,l\J) = x forces
the predictionto equalf( U). We will sayacomputerC' with outputY'(.) is weakly predictableto
anothercomputerC, andwrite C > C', if the answerpartitionof C'is weakly predictableto C. If
we just say “predictable” it will be assumed that we mean weak predictability

Seethevariantsof Ex. 2 in theappendixXor illustrationsof weakly predictablesetsof comput-
ers. Thesedemonstrateamongotherthings,thatthe “>” relationneednot be transitve. In fact,
even if someC! could predict C?s input simultaneouslywith predicting C?s answey it still
would notfollow thatC! canpredictsomertjust becaus€? can.Thisis becaus€! hasno ability
to setits inputto ensurehatx? is oneof thevaluesinvolvedin C%s predictingrtt (Strongpredict-
ability, introduced belw, rectifies this.)

This definition of predictables very broad.It doesnt requirethattherebe a sensen which
theinformationinputto C is interpretableasa descriptionof the externaluniverse.(This freedom
is whatallows usto avoid formalizing the conceptof whethersomeinput doesor doesnot “cor-
rectly describe’the externaluniverse.)indeed we don't evenrequirethatY o U) = g. Evenif the
computergetsconfusedaboutwhat questionit’s answeringwe give it creditif it comesup with

the correctanswerto our questionln addition,considersomeintelligibility functionf andassoci-
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atedx. Thenrecallthatwe do not even forbid the possibility of two U’s that are both consistent
with that x and that both obey Y (U ) = f( U ), but that nonetheleshave differentY ,( U ).
(‘Accordingly, lack of predictabilityimplies merely thatfor somef a correctanswercannotbe
guaranteed, rather than that a wrong answer is assured.

Furthermorewhile motivatedby thetaskof predictingthe future, the definition of weakpre-
dictability presentedhereis moregeneralconcerningary computatiorthatcanbe castin termsof
inputs,questionsaboutthe universe andassociate@nswersFor example,notimeslike0,tor T
occurin thedefinitionof ‘predictable’or in ary of thetermsgoinginto thatdefinition.Moreover,
evenwhenthereis sometemporalorderingthatrelatesthe inputs,the outputs,andthe prediction
involvedin the computationwe neednothave T > 1 > 0 asin Ex. 1. We couldjustaseasilyhave
T<t<O0orevenT <0<T1. Sotheresultspresentedelon will establisitheunpredictabilityof the
past aswell asof thefuture. They alsocanbeviewedasestablishinghefallibility of ary obsena-
tion apparatus and of amontrol apparatug.hese points will be returned to belo

Finally, it is importantto realizethat the requiremenof intelligibility canbe removed from
the definition of predictability andmary of theresultspresentedelow will still hold (e.g., Thm.
2 will still hold). Thatrequirementanbe helpful in extensionsof this papers analysishowever,
andcertainlyseemsnatural”. Henceits inclusionin our definition. Seethe discussiorieadingup

to Def. 4 in the appendix for more discussion of this point.

2. THE UNPREDICTABILITY OF THE FUTURE

i) Theimpossibility of assuredly correct prediction

Even if we canposeall the questionsin somesetto a computey that saysnothing about
whetherby appropriatechoiceof input thatcomputercanalwaysbe assuref correctlyanswer-
ing ary questionfrom thatset.In fact,evenif we restrictattentionto question-independeittelli-

gibility sets,no physical computercan be assuredlycorrectin its predictionsconcerningthe
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future.

Whereaghe impossibility expressedoy Thm. 1 follows from cardinality algumentsand the
power setnatureof intelligibility sets,the impossibility of assuredlycorrectpredictionfollows
from the presencef the negation operatorin even (question-independenittelligibility sets.As
anexampleof thelogic underlyingthe proof, considera pair of computersgpredictingthefutureas
in Ex. 1. Have both of the computerdhave answersubsectionshatarebinary, andhave initializa-
tion time equal0 and questiontime equalT. Have one of the two computerspredictthe others
time T outputbit andthenhalt andfreezeits output,all by sometime t < T, whereaghat other
computerpredictsthe negation of the first one’s time T outputbit just beforeit too halts. Since
both computers'outputcalculationsnusthalt by t, they will contradicteachotherwhenthe pre-
diction time T arwes. Therefore thyecannot both be correct in their predictions.

This kind of reasoningcanbe extendedto apply to ary pair of physical computersnot just
onesthatwork asin Ex. 1. For example,no “halting andfreezing”is requiredin general(Indeed,
in practiceC cannotguarantedhatits outputwill be frozenwith a particularoutputvalue that
doesnotchangeuntil aftersometime T, sinceit is alwayspossiblethatanoutsidesystemcomesn
andperturbsC.) EventhetimesO, T, and T aresuperfluousThis is formally statedin the follow-

ing theorem:

Theorem 2: Considerary pair of distinguishablehysical computers{Ci -1 =1, 2}. It is notpos-
sible that both &> C? and ¢ < C2.

It shouldbe emphasizedhat Thm. 2 holdsno matterhow large and powerful our computers
are;it evenholdsif the“physical systemunderlying” oneor both of our computerds thewhole
universe It alsoholdsif insteadC? is therestof the physicaluniverseexternalto CL. As aparticu-
lar instanceof this latter case the theoremholdsevenif C! andC? are physically isolatedfrom
eachother[ t > 0. (Resultssimilarto Thm. 2 thatrely on physical couplingbetweerthe comput-

ers are presented in [33].)
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Ratherthan viewing it asimposinglimits on computers,Thm. 2 caninsteadbe viewed as
imposinglimits on the computationaktapabilitiesof the universeasa whole. Fromthis perspec-
tive thattheoremestablisheghatthe universecannotsupportparallelcomputatiorin which all the
nodesaresuficiently powerful to correctlypredicteachothers behaior. In addition,it is possible
to generalizethis papers formalismto stochastiauniversesand/orcomputerslin that extension
Thm. 2 takesthe form of sayingit is impossiblefor the probability of correctpredictionfor two
computergo bothequall. An openquestions whatthe higheste is suchthattwo computersan
simultaneoushhave it astheir probability of correctprediction.(Seediscussionn the appendix

just before Lemma 1.)

ii) Implicationsof Thm. 2

Let C be a computersupposedlycapableof correctlypredictingthe future of ary systemsS if
appropriateinformation concerningthe initial stateof S is provided to C, asin Ex. 1 above.
AssumethatC is not sopowerful thatthe universeis incapableof supportinga copy of C in addi-
tion to theoriginal. (Thisis certainlytrue of any C concevably built by humans— seetheformal
definitionof acopy of aphysicalcomputelin Def. 3in theappendix.Have S be sucha copy of C.
We assumehatfor ary pair of t = 0 inputvaluesfor C, thereis atleastoneworld-line of the uni-
versein which C’s input is one of thosevaluesandthe othervalue constituteshe input of C’s
copy (i.e., we hae input-distinguishability).

Applying Thm. 1 to ourtwo computersye seethatthereis afinite intelligibility setthatis not
intelligible to C, i.e., therearequestiononcerningan S that cannoteven be posedto C. (More
formally, thereis eithersuchasetfor C or for its copy, S.) In addition,by Thm. 2, thereis afinite
guestion-independeirfandthereforepotentially pose-able)ntelligibility setconcerningS thatis
not predictableto C. In otherwords,theremustbe a question-independeiritelligibility function
concerning S that C predicts incorrectlp matter what the input to C.

Thebinarypartitionover Ut inducedby this unpredictablentelligibility functionconstitutesa

guestionconcerninghetime T stateof S. In additionevery oneof the setof potentialinputsto C
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correspondso a subsebf Uy, andthereforecorresponds$o a subsebf the possiblestatesof C's
“input section”attime 0. (In Ex. 1, X(.) is setup sothatevery elementn {x} corresponds$o one
andonly onestateof C’s input sectionat time 0.) Similarly, every outputof C corresponds$o a
subsebf U, andthereforea subsebf thepossiblestatesof C’'s “output section"attime 1. Accord-
ingly, our resultmeanghatthereis no inputto C attime O thatwill resultin C’s outputattime t
having the correctanswerto our questionconcerninghetime T stateof S.For 0 <1 < T, thiscon-
stitutesa formal proof thatno computercanpredictthe future fasterthanit occurs.(Or morepre-
cisely, that the unierse cannot support more than oneycoipsuch a computgr

This meansjn essencethat Laplacewaswrong: evenif the universewerea giant clock, he
would not have beenableto reliably predictthe universes future statebeforeit occurred Viewed
differently Thm.2 meanghatregardlessof noiselevelsandthedimensionsandothercharacteris-
tics of the underlyingattractorsof the physicaldynamicsof various,therecannotbe atime-series
prediction algorithm [9] that is @&hys correct in its prediction of the future state of such systems.

Notethatthereis no requirementhattheinitialization time, questiortime, and/oroutputtime
of thecomputelS’s partitionsequalO, T, andt respecitrely, thevaluesthey havefor C. All thatis
requiredis thatthis S be a copy of C. In particularthe possibility is allowedthatS is a temporal
translation of C, either forard or backwrd in time.

In addition,asmentionedpreviously, theresultalsoholdswhentheinitialization timeis 0 and
theoutputtimeis somet > 0, but thequestiortime T < 1. In otherwords,thecomputercanrunan
arbitrarily long time past T andstill mustmake mistales. Perhapanore surprisingly the result
still holdsif notonlyis T < T, butin additionT < 0. In this casetheresultdeniesthe possibility of
assuredlycorrect“prediction” of what occurredin the time precedinginitialization. Intuitively
speakingmemoryis just asfallible aspredictingthe future. This shouldnot be surprising.After
all, notemporallyasymmetridaw like thesecondaw arisesn ouranalysissoall theresultsmust
be time-symmetric.In fact, the temporally (a)symmetricnatureof the laws of the universeare
irrelevant to Thm. 2 — that theorem treats the entirgarses world-line as a single entity

In oppositionto this formal proof of the necessaryallibility of retrodiction,oneis temptedo
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arguethatno contradictionresultsif | asktwo computergo recordeachothers’paststatesonly
with oneof themnegated(to try to follow alongwith the proofof Thm. 2). SotheclaimthatThm.
2 still holdsfor T < 0 cant be true, it would appearand infallible retrodictionis allowed. To
resole the conflict betweerthis intuitive agumentandthe explicitly T-independenbatureof the
proof of Thm. 2, notethat Thm. 2 only saysthatthereis some recordingat which the computer
mustfail. The setof all suchretrodictionsencompassesary thatarequite complicatedIn par-
ticular, the liar's paradoxat the heartof Thm. 2 will arise when the recordingsconcernthe
dynamic pre-images of those future states that establishllibdity of prediction the future.

To illustratethis in more detail, first notethatif two computersare physically isolatedfrom
eachotherfor all time, thereis no way eachcanreliably recordthe others’paststate.So our two
putatie retrodictingcomputersmustbe physically coupled,andthereforemustbe opensystems.
Now considera corventionaldigital versionof sucha computer C, whoseoutput partition ele-
mentsarelabelledby thet = 1 statesof its outputbits. Soeachpossibleoutputof C is the setof all
possible statesof the entire universethat are consistenwith someparticulart = t patternof C’s
outputbits. Call sucha set,of all possiblestatesconsistentvith the patternof C’s outputbits at
time 1, “aligned” with that pattern/ time pair. In generalsinceC is open,a setof stateshatare
alignedwith anoutputpatternof C’s attime t will notdynamicallymapto a setthatis aligned
with thosebits at an earliertime T < 0. (Instead,generically the temporalprojectionof those
statesdbackin time will beconsistentvith multiple outputpatternsover C atthatearliertime, with
eachsuchpatternaccompaniedy only a propersubsetof all possibleassociatedtatesof the
externaluniverse.)In thelanguageof Ex. 1, while G™( U; ) is definedpurelyin termsof thet = t
state of CS output bits, this need not be the case for G {()JU

Sotoinducetheliar’'s paradoxwe poseto S a questionconcerning = T thatdoesnot concern
somesetof statesalignedwith C’s outputbits at thattime. Ratherthe questionwe poseconcerns
thepre-imagegover U) of theindividualt = T U-spacepartitionelementghatindex C’'st = T out-
puts. The sameis true for the computerC’s retrodictionconcernings. It is thesekinds of ques-

tions that establish thealfibility of retrodiction.
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While theseresultsconcerningboth predictionandretrodictionhold if C andS areisolated
from oneanother] t > 0, they alsohold if C andS arecoupledatsuchtimes.Indeedthey hold no
matterwhatthe form of suchcoupling.Soin particular we canhave the couplingconsistof C’s
“observing”someaspecbf S. In factthisis the naturalway to try to doretrodiction.Accordingly,
the impossibility of unerring retrodiction implies the impossibility of unerring olasierv.

As amoredetailsexample,considera corventionalobsenation experiment wherewhatvari-
ablein Sis obsered at time 1 is determinedoy characteristic®f the experimentalapparatust
thattime. In otherwords,it is determinedy certaincharacteristicsef u(t), i.e., by certaincharac-
teristicsof G, i.e.by wherelisin aparticularpartitionover 0. Eachelemenin thatpartitioncor-
respondsto a different variable to be obsered, i.e., to a different question. So in such
conventionalobsenation, thereis animplicit question-aluedpartition of 0. The “obsenation”
consistsof providing an answerto someassociatedjuestion.In other words, in corventional
obsenationthe choiceof whatto obsenre, togetherwith the resultantobsenation, constitutesan
outputpartition. Theinput partitioninitializing theexperimenthenis away of forcing (a U which
gives)an outputpartition with the desiredquestion hopefully alsohaving the correctassociated
answer (Notethatin this interpretatiorof a physical computerasanobsenationdevice, its input
will in generalnot uniquelyfix its outputanswey unlike the casewith predictiondiscusseadn Ex.
1.)

Soobsenationis simply aninstanceof physical computationAs aresult, Thm. 2 establishes
theimpossibility of adevice C thatcan,infallibly, take any specificatiorof somecharacteristiof
the universeasinput, andthen obsene the value of that characteristicThis impossibility holds
independenbf consideration®f light-conesandthelike, andin factholdsjustaswell in a uni-
versewith ¢ = o asit doesin ours. (Alternatively, the time at which the characteristias to be
obseredcanbe specifiedn the computers input, andthereforecanbe far enoughinto thefuture
sothatthelight-coneemanatingrom thesettingof thatinput canintersecwith thatof thecharac-
teristicbeingobsened.)In all this, Thm. 2 establisheshatary putatve general-purposebsena-
tion apparatusnust,for somesystento beobsened,make amistale in its claimedobsenation of
that system.

This unobserability constitutesa sort of non-quantum-mechanicalincertainly principle”.
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Justlike the Copenhagewersionof the quantummechanicauncertaintyprinciple, the physical
computationuncertaintyprinciple relieson having an “intelligent” systemperformthe obsena-
tion. In contrastto the quantummechanicsasehowever, in the physical computatiorversionof
the uncertaintyprinciple, an “intelligent obsenational system”is given a formal definition (asa
physical computer). See also the discussion in Sec. 4(i).

Justasthe impossibility of unerringpredictionof the pastmeanghatunerringobsenationis
impossible sotheimpossibility of unerringpredictionof the future meanghatunerringcontrolis
impossible More precisely thereis nothingin the maththatforcesC to play a “passve obsena-
tionalrole” in the couplingwith S. Sowe canjustaswell view Thm. 2 asestablishingheimpos-
sibility of an apparatusapableof ensuringthat thereis no discrepang betweena valuein its
“answersection” and an associateatharacteristiof a systemS externalto C. (Note that while
weakpredictabilitydoesnot requirethatx fixesthe valueof y, independentf theinitial stateof
S, nor doesit forbid x to fix y; it only requiresthaty, correctlyanswershe associatedjuestion
concerningS.) Accordingly, thereis no suchthing asa general-purposeontrollerthatworks per-
fectly, in all situations.

Theseimpossibility resultshold evenif onetriesto have the input to the computerexplicitly
containthe correctvalue of the predictionor obsenration. (Note that sincethe universeis single-
valuedanddeterministic,sucha value mustexist.) Impossibility alsoobtainsif the input is sto-

chastic, since it holds for each inpaiwe indvidually.

3. THEMATHEMATICAL STRUCTURE RELATING PHYSICAL COMPUTERS

Thereis a rich mathematicalstructuregoverning the possible predictability relationships
amongsetsof physicalcomputersespeciallyif onerelaxesthe presumptiorthatthey arepairwise

input-distinguishable. This section presents some of that structure.
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i) Thegraphical structure over a set of computersinduced by weak predictability

Thm. 2 directly addressepredictabilityrelationswithin pairwise-distinguishablsetsof mul-
tiple computersHowever onecanalsouseit to derive resultsfor the predictabilityrelationships
within othertypesof setsof computersFor example,considera setof n physical computers{Ci}
suchthatC! > C2> ...> C"> CL If thatsetis only pairwise-distinguishablaye canhave C! > C?
> ...> C" but still not have C! > C". (SeeEx. 2" in the appendix.)Soit would seemthat Thm. 2
doesnot precludehaving C" > C1, i.e., doesnot precludepredictabilitycycles.It turnsoutthough
thatsuchcyclesareimpossibleif oneconsiderssetsthataremorethanjust pairwisedistinguish-

able. An g@ample is the follwing corollary of Thm. 2:

Corollary 2: It is not possibleto have a (fully) distinguishablesetof n physical computers{Ci}
suchthat &> C?> ...> >l

What are the generalconditions under which two computerscan be predictableto one
anotherBy Thm. 2, we know they arent if they're input-distinguishableWhat aboutif they're
oneandthe sameNo physical computeris input-distinguishablérom itself, so Thm. 2 doesnt

apply to this issue. Heever it still turns out that Thm. &'implication holds:

Theorem 3: No plysical computer is predictable to itself.

Intuitively, this resultfollows from the factthata computercannotmake asits predictionthe
logical inverseof its prediction.An importantcorollary of this resultis that no outputpartition,
consideredn isolationof ary input partition, is predictableto a physical computerthat hasthat
outputpartition. CombiningThm. 3 and Coroll. 2 andidentifying the predictability relationship
with an edgein a graph,we seethat fully distinguishablesetsof physical computersconstitute
(unionsof) directedagyclic graphs.The allowed graphicalstructureof otherkinds of sets(e.g.,

pairwise-distinguishable ones) is not well-understood at present.
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i) God computers, omniscience, and variants of error correction

Whenconsideringsetsof morethantwo computersijt is importantto realizethatwhile it is
symmetric theinput-distinguishabilityrelationneednot betransitve. Accordingly, separateair-
wisedistinguishablesetsof computersmay partially “overlap” oneanother Similarly, stipulating
the \alues of the inputs of grtwo computers in a pairwise-distinguishable set may force some of
the other computers in that set toeda particular inputalue.

Coroll. 2 doesnot apply to a pairwise-distinguishableet. To analyzesuchsets first definea
god computer to beary physicalcomputelin asetof computersuchthatall otherphysicalcom-
putersin thatsetarepredictableto the god computer By Thm. 2, no pairwise-distinguishablset
of computersancontainmorethanonegodcomputerThereis atmostonecomputerin ary pair-
wise distinguishablesetthat cancorrectly predictthe future of all othermemberof thatset,and
moregenerallyat mostonethatcanaccuratelypredictthe pastof, obsere, and/orcontrolary sys-
tem in that set.

Evenagodcomputerin a pairwise-distinguishablsetmay not be ableto correctlypredictall
othercomputerdn its setsimultaneously. The input value it needsto adoptto correctly predict
someC? may precludeit from correctlypredictingsomeC3 andvice-versa.Oneway to analyze
this issueis to considera compositepartition Y 2*3 definedby the outputpartitionsof C? and C2.
We cantheninvestigate whetherand when our god computercanweakly predictthe composite
outputpartition. To thatend,definea computerC! in a setof pairwise-distinguishableomputers
{C1, C? ...} to be omniscient if the compositeoutputpartition Y2*®*is predictableto CL. It is
straight-forvard to \erify that an omniscient computer is a god computer

Now in generalpnemight presumehattwo non-godcomputersn a pairwise-distinguishable
setcould have the propertythat, while individually they cannotpredict everything, considered
jointly they would constitutea god computeyif only they couldwork cooperatrely. An example
of suchcooperatrity would be having oneof the computergpredictwhenthe otherone’s predic-

tion is wrong. It turnsoutthoughthatundersomecircumstancethe merepresencef someother
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third computerin that pairwisedistinguishablesetmay make sucherrorcorrectionimpossible jf
that other computer is omniscient.

As an exampleof this, say we have three pair-wise distinguishablecomputersC?, c? C3,
where C? always answerswith a bit (i.e., 11y suchthat A(y,®) [ B). We want C?s outputto
“correct” C¥s predictions,andwe alsowantto have thosepredictionsmadeby C® (potentially)
concernCl. Sohave C! beintelligible to C3. Thenit turnsout thatdueto Thm. 2, if C* is omni-
scient,it is not possiblethat C? alwayscorrectly outputsa bit sayingwhetherC3’s answers the
correctresponseo C®s guestion.Thisis statedformally (andthenderived)asCorollary 3 in the
appendix.This resulteven holdsif Y2*2 is only intelligible to C1, without necessarilyoeingpre-
dictable to it.

Coroll. 3 canbe viewed asa restrictionon the efficacy of ary error correctionschemen the
presencef a (distinguishablepmniscienttomputer Thereareotherrestrictionsthathold evenin
theabsencef suchathird computerAn examplearisesf we considerntwo distinguishablenutu-
ally intelligible physical computersC! andC?, whereboth A(y’o) 0 B andA(y%,) 0 B Oy', O
{y 1q} andy2q O{y Zq}. For suchcomputersit turnsoutthatThm.2 meandghatit is impossiblefor
c! andC? to be“anti-predictable’to eachother in the sensethatfor eachof them,the prediction
they malke concerninghestateof theothercanalwaysbe madeto bewrongby appropriatechoice

of input. This is preen asCorollary 4 in the appendix.

iii) Physical computation analogues of Turing Machines
Thereareseveralwaysthatonecanrelatethe mathematicastructureof physicalcomputation
to that of conventionalcomputerscience Herewe sketchthe salientconceptdor onesuchrela-
tion coupling physical computationand the mathematicaktructuregoverning Turing machines
(TMs).
A TM is a device that takesin an input string on an input tape,then basedon it produces
asequencef outputstrings, either “halting” at sometime with a final outputstring (whenan

internal“halt” stateis entered)pr never halting. As analternatve, thefactthatthe halt statehas/
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hasnt beenenteredby ary time can be reflectedin a specialassociategatternin the output
string, in which casethe sequencef outputstringscanalwaysbe takento be infinite. As expli-

catedabove, in therealworld inputsand (sequencesf) outputsare elementsof partitionsof 0.

Soin onetranslationof TMs to physicalcomputersstringson tapesarereplacedwith elementof

thepartitionsX(.) andY(.).Oneway of doingthisis to have{x} bethesetof all strings.{y o} then
consistsof a single partition q thatdividesup U the exact sameway asthe input partition does,
only with A(q) beingthe setof all infinite sequencesf strings.For ary G X( U ) is aninput
string,andY/( u ) is theassociatedequencef stringsgeneratedyy runningthe TM on thatinput
string. Having Y( U ) specifyboththeinitial stringandthe ensuringsequencef stringsis analo-
gous to the carentional vay of implementing neersible computation [2-6].

Ratherthanthrougha setof internal statesyead/writeoperationsstate-transitionules, etc.,
thetransformatiorof inputsto outputsin a physicalcomputeris achiezed simply throughthe def-
inition of the pair of anassociatethput partitionandoutputpartition.For suchaTM thatdeclares
in its outputstringwhetherit hashalted,the physical computatioranalogueof whethera compu-
tation will ever halt is simply whethet is in some special subset of {y}.

In the realworld X(.) andY(.) usuallydivide up U differently In this they areanalogougo
TM’s with multiple tapesratherthancornventionalsingle-tapelMs. Oneway to generalizethis,
motivatedby the definition of predictability is to requireof eachq U {y ¢} thatA(q) is the setof
all possiblesequencesf strings.Differentq [l {y 4} aretheninterpretedasequialentto questions
“what sequence of output strings ensures from some input string s?’féoelifs.

In this context the question-independemniatureof weakpredictabilityis looselyanalogougo
a TM’s being able to overwrite the “question” originally posedon its tapewhen producingits
“answer” on that tape.We will adoptthis identificationfrom now on, identifying the physical
computationanalogueof a TM asan input partition togetherwith the answercomponenof an
output partition.

Thisidentificationmotivatesseveralanalogue®f the Halting theorem Sincewhetherapartic-

ular physicalcomputerC? “halts” or not canbetranslatednto whetherits outputis in a particular
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region, the questionof whetherC? haltsis a particular(question-independenit)telligibility func-
tion of C2. Correctlyansweringhe questiorof whetherC? haltsmeangredictingthatintelligibil-
ity function of C2. In the context of physical computationit is naturalto broadenthe issueto
concernall intelligibility functionsof c2 Accordingly, in this analogueof the claim resohed for
TM’s (in the negative) by the Halting theorem,one asksif it is possibleto constructa physical
computerC! thatcanpredictary computerCZ. To answetthis, simply considerthe casewhereC?
is acopy of CL. By applyingThm!s 2 and3 to this case pneseeshatthe answeiis no, in agree-
mentwith theHaltingtheorem(Evenif onestrengthenshenotionof predictability asin the next
subsection, the answer is still no, by Thm. 6 presenteavb8ke also Coroll. 4 in the appendix.)
There exist a numberof alternatve physical computeranaloguesof the Halting problem.
Thoughnot pursuedatlengthhere, it is worth briefly presentingpnesuchalternatve. This alterna-
tive is motivatedby armguing that,in the realworld, oneis not interestedso muchin whetherthe
computatiorwill ever“halt”, but ratherwhetherthe associate@utput(saycornventionally“read”
atsomepre-fixedtime) is “correct”. If we take “correct” to berelative to a particularquestionthis
motivatesthe following alternatve analogueof the Halting theorem:Given ary setof physical
computefC'}, thereis no memberof thatsetC suchthatfor every C' 0 {C'}, (i) C'is intelligible
to C; and(ii) for all questionsy' L1 {y' 3}, thereis anx valuewhichinducesC to answemwith a1 if

and only if the answer of C' to ' is correct. $&eorem 4 in the appendix.

iv) Strong predictability

At the otherendof the spectrumfrom distinguishableeomputerss the casewhereonecom-
putersinput canfix anothers, by beingobsened by thatothercomputer(or perhapsvenby set-
ting that other computers input moredirectly). It is whensuchrelationshipshold that physical
computatioranalogue®f variousmembersf the Chomsly hierarcly, andparticularlyuniversal
Turing machines, arise.

To capturesucha relationship,we saythata computerC2 is strongly predictable to C* (or

equivalentlythat C! can strongly predict C?), andwrite C! >> C? (or equivalently C? << CY) if
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two conditionshold. First, C> mustbeintelligible to C1. Secondfor every intelligibility function
concerningC?, f, andfor everyx?, Ox* 0 {x 1} thatstrongly inducesthepair (f, x%). Thatis, there
existsa valueof x* suchthatX( u) = x* forcesY1,( U) to equal(A(f), f( U)) andreflectsthe
fact that X( U ) = 2 (or, viewed alternatiely, forces it to be the case that(Xi ) = ).

If ct canstronglypredictCZ, thenfor ary X2 andassociatedmsweryza — for any computa-
tion C2 might undertale — thereis aninputto C! thatis uniquely associatedvith x? andthat
cause<! to output(ary desiredquestion-independermtelligibility function of) the associated
y2. By alsoensuringhatX?( ) = x2, with thatinputwe ensurethatC is outputtingC? s conclu-
sion for the desiredpremise x. Intuitively, thereis someinvertible “translating” mapthat takes
C?sinputand“encodes’it in C’sinput,in suchawaythatC! can“emulate” C? runningon C%s
input, andtherebyproduceCZ’s associatedutput.In this way C* canemulateC?, muchlike uni-
versal Turing machinescan emulateother Turing machines(Seethe definition of a universal
physical computer belg.)

Strongpredictabilityof a computerimpliesweakpredictabilityof thatcomputer(Unlike with
weak predictability thereis no suchthing asstrongpredictability of a partition.) Soresultscon-
cerningweak predictabilitythat are not predicatedbn input distinguishability(which is impossi-
ble for strongpredictability)still hold if they arechangedy replacingweak predictabilitywith
strong predictabilityThis includes in particular Thm. 3 and Coroll. Bt(hot Thm. 2).

Weakpredictabilitydoesnotimply strongpredictabilityhowvever. Moreover, the mathematics
for setsof physicalcomputersomeof which arestronglypredictableo eachother(andtherefore
not distinguishablelliffersin somerespectgrom thatwhenall the computersaredistinguishable
(the usualcontet for investicationsof weakpredictability). An exampleis the following result,

which shavs that strong predictabilityehys is transitie, unlike weak predictability

Theorem 5: Considerthreephysical computerC?, C?, C3}, anda partition 1t whereboth C3
andmare intelligible to &,

) Cl>>C>nb Cl>m



31

i)y Cl>>C>>c0 cl>>C

Strongpredictabilityalsoobeys the following resultwhichis analogougo both Thm!s 2 and

Theorem 6: Considerary pair of (not necessarilgistinguishablephysical computers{Ci: i=1,

2}. It is not possible that both'G> C? and ¢ << C.

Many of the conditionsin the precedingresultscanbe wealenedandthe associateadonclu-
sionsstill hold (e.g.,we canwealentherestrictionthatintelligibility functionshave imagespace
[0 B.) Thesewealenedversionare usuallymore obscurethough,which is why they arenot pre-
sented here.

A TM T! canemulatea TM T2 if for ary input for T2, T produceshe sameoutputas T2
when given an appropriatelymodified version of that input. (Typically, the “modification”
involvespre-pendinganencodingof T?to thatinput.) Theanalogousonceptfor a physicalcom-
puteris strongpredictability;one physical computercan“emulate” another(not distinguishable,
in general)computernf it canstrongly predictthat otherone.Intuitively, the two componentof
T's emuIatingTz, involving T?s input andits computationabehaior, respectrely, correspond
to the two componentf the requirementconcerningx! valuesthat occurin the definition of
strongpredictability Therequirementhatthex?! valueforcestheanswerf y* to equalthatof ary
intelligibility functionof C?is analogougo encoding(the computationabehaior of) the TM T?
in a string provided to the emulatingTM, T*. Requiringaswell that the value x* ensureghat
X2( U) = x? is analogougo alsoincluding an “appropriatelymodified” versionof T2s input in
the string providedto T1. (Note thatary mappingtakingx? 0 {x %} to anx? thatin turn induces
thatstartingx2 is invertible, by construction.)This motivatesthe following definition of the ana-

logue of a uniersal TM:
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Definition 9: A universal physicalcomputerfor a setof physical computerss a memberof that

set that can strongly predict all other members of that set.

Notethatratherthanreproducehe outputof a computerit is stronglypredicting,a universal
physical computerproducesthe value of an intelligibility function appliedto that output. This
allows the computersn our setto have differentoutputspacedrom the universalphysical com-
puter However it contrastswith the situationwith corventionalTM’s, beinga generalizatiorof

such TMS.

v) Prediction complexity

In computersciencetheory givenauniversalTM T, the algorithmiccompleity of anoutput
string s is definedasthe lengthof the smallestinput string s' thatwheninputto T producess as
output.To constructour physical computatioranalogueof this, we needto definethe “length” of
an input region of a physical computer To do this, first, given ary computerC and partition 1t
of lAJ definea (weak) prediction input set asa minimal subsetof x valuesneededfor C to
weakly induceall intelligibility functionsof 1. C}(m) is definedasthe setof all suchprediction
inputsets.Intuitively, thepredictionsetof C for 1t/ C'is aminimal subsebf {x} thatis neededy
C fortt/ C' to be predictable to C.

Next, to definethe physical computatioranalogueof the lengthof a string, givena computer
C definethelength of a subsef = [0 {x} asthe negative logarithm of the volumeof all oo 0
suchthatX( G) [0 =. We write thisasl(Z). Thenif C > 11(soC () is non-empty)the prediction
complexity of Ttfor C is theminimal suchlengthover the setC(11). We write thatcompleity as
c(mt| C). (Notethatthe predictioncompleity is definedin termsof weakpredictabilityratherthan
strong; strong predictability will arise in our bounds on it.)

We areprimarily interestedn predictioncomplexities of binary partitions,in particularof the
binary partitionsinducedby the separateingleelementsof multi-elementpartitions.(Thebinary

partition inducedby someparticularelementp 0 1T is just the binary-valuedfunction of U of
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whetheror not 1t( U ) = p.) To seewhat our definitionsmeanfor sucha partition, say you are
givensomeseto [ 0 (i.e.,you aregivenabinary partition of lAJ). Supposdurtherthatyou wish

to know whetherthe universeis in o, andyou have somecomputerC to useto answerthis ques-
tion (i.e., evaluateall four intelligibility functionsof the partition (o, U\ 0). Thenlooselyspeak-
ing, the prediction complity of o with respectto C is the minimal amountof Shannon
informationthat mustbe imposedin C’s inputsin orderto be assuredhat C’s outputcorrectly
answerghatquestionn particular if o corresponds$o a potentialfuture stateof somesystemS

externalto C, thenc(o | C) is ameasuref how difficult it is for C to predictthatfuture stateof S3

Looselyspeakingthe moresensitvely thatfuture statedependson currentconditions,the more
comple it is.

In mary situationst will bemostnaturalto choosehevolumemeasuremplicitly definingl(.)
to be uniform over accessiblgphasespacevolume, so that the compleity of = is the negative
physicalentropy of constrainingﬁ to lie in =. But thatneednot be the case For example,we can
insteaddefinethe measuresothatthe volumeof eachelementof theassociatedx} is somearbi-
trary positive real number In this case the lengthsof the elementsof {x} providesus with an
arbitrary ordering wer those elements.

Thefollowing exampleillustratesthe connectiorbetweernengthsof regions= andlengthsof

strings in TMS:

Example 3: In a corventionalcomputer(seeEx. 1 above), we candefinea “partial string” s
(sometime<alleda“file”) takingup thebeginningof aninput sectionof memoryasthe setof all

“completestrings” taking up the entireinput sectionwhosebeginningis s. We canthenidentify
theinputto the computerassucha partial stringin its input section.(Typically, therewould be a
specialfixed-size‘length of partial string” region even earlier at the very beginning of the input
section telling the computehow muchof the completestringto readto getthatpartial string.) If

we appendcertainbits to s to geta new longerinput partial string, s', the setof completestrings

consistentvith s'is a propersubsebf the setof completestringsconsistentvith s. Assumingour
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volume measuredy is independenbdf the contentsof the “length of partial string” region, this
means thal(s’) > I(s).

Thisis in accordwith the usualdefinitionof thelengthof a stringusedin Turing machinetheory
Indeed,if s'containsn more bits thandoess, thenthereare 2" timesasmary completestrings
consistentvith s asthereareconsistentvith s'. Accordingly, if we take logarithmsto have base2,
[(s") =I(s) + n.

Saywe want our computerto be ableto predictwhetherﬁ lies in someseto. (To maintainthe
analogywith Turingmachinesg coulddelineatean“output partialstring”. This couldbedonefor
exampleby delineatinga particularvalue of a prediction,perhapsaven onein someothercom-
puter) In theusualway, this correspond$o having thebinary partition{ ubo, U0 o} beweakly
predictableto our computer So the predictioncomplexity of that predictionis the length of the
shortestregion of our input spacethat will weakly inducethat prediction.(Note that sincewe
requirethatall four intelligibility functionsof o beinduced,morethanoneinput “partial string”

is required for that induction, in general.)

We now derive a boundon differencef the predictioncompleity of a partitionwith respect
to two differentuniversalcomputersFirst, given C togetherwith someother computerC’, we
needto definea strong prediction input setof C for thetriple of (C', asubse&' of theinputval-
uesof C', anda subseff ' of theintelligibility functionsfor C"). This is a minimal subsetof C’s
inputvaluesneededo stronglyinduceevery pair (f' O ', X' [0 ='). Whenthereis atleastonesuch
subset we will write G(C', =', f ') for the set of all such subsets.

Thefactthaty, values(cf. thedefinitionof predictionpartitionin theappendix)specifytheset
Alyy makesworking with Def’s 10 and11 a bit messy In particulay to relatepredictioncom-
plexity to propertiesof theassociatediniversalphysicalcomputemwe mustusea setof “identity”

intelligibility functions defined as follws:

Definition 12 (i): Given a space Z B and a plsical computer C = (X, Y),
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{l Cz} is the setof all question-independemtelligibility functionsof C whereA(ICZ) =Z,

and where U such that ACY( 1)) =Z, F5( 1) = Ya( U).
We also will need the folleing definition:

Definition 12 (ii): GivenaspaceZ [ B anda physicalcomputerC = (X, Y), “C < (2)” is defined
as those X {x} such that X(U) =x O A(Y4( ) D0z

Sofor example,if Z = B, apair (x*> 0 [C?] ~(2), 1%, 0 {I %)) is aninputto C? andanintelligibil-
ity functionof C?'s output,respectiely. Thatinputx? inducesanassociatedutputquestiong? O
{y 2q}, thattakeson (both) B valuesasonevariesoverthe U inputtoit. Similarly, theintelligibility
function x22 takes on (bothPB values as oneavies wer the inputs to it.

Using thesedefinitions,we now boundhow muchmorecomple a partition canappearo C*
thanto C? if C! canstronglypredictC?. Thoughsomevhatforbiddingin appearancentuitively,

the bound simply reflects the comxitg cost of “encoding” @in Cl's input.

Theorem 7:Given ary partitionttand plysical computers €and G where ¢ >> 2>t
) c(m|C) - c(m| D) <
In[o(2"] - In[3] +
maxyz g, X201~ (2), 12,002, 1l (C) (%R 12)]
min g, X20c3 @z 11X°1,
or alternatvely,
i) cm|CY) - (| B <
In[o(2M] +
min 7 g, X20[c? * (2), 12,001 2,}) LECY (e 2] -

min o, X20c3 @z 11X°]
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As onevariesTt, in both boundsin Thm. 7 how the bounddependsn C! and C? doesnot
changeln addition,thoseboundsareindependenof mtfor all tsharingthe samecardinality Soin
particularthey areindependenbf the precisechoiceof partition 1t solong asit is a binary parti-
tion like thosediscussedn Ex. 3. In addition, intuitively speakingtheterm|| (Cl)'l(Cz, X2, 1)
] occurringin bothboundsis relatedto the costof emulatingthe onecomputeron the other This
illustrateshow Thm. 7 is the physical computatioranalogueof the resultin Turing machinethe-
ory thatthedifferencen algorithmiccompleity of afixedstringwith respecto two separat@ur-
ing machineds boundedby the compleity of “emulating” the one Turing machineon the otheg
independent of the fied string in question.

Considerthe possibility thatfor the laws of physicsin our universe thereexist partitionsX(.)
and Y(.) that constitutea universalphysical computerC” for all other physical computersthat
exist in our universe.Thenby Thm. 6, no othercomputeris similarly universal. Thereforethere
exists a uniquepredictioncompleity measurehatis applicableto all physicalcomputersn our
universe hamelycompleity with respecto C’. (This contrastsvith the caseof algorithmicinfor-
mation compleity, wherethereis an arbitrarinessn the choice of the universal TM used.)If
insteadthereis no universalphysical computerin our universe,thenevery physical computerC
mustfail atleastonceat (strongly)predictingsomeotherphysicalcomputer(Notethatunlike the
casewith weakpredictabilityconsideredn Thm. 2, herewe arent requiringthatthe universebe

capable of hang two distinguishableersions of C.) This establishes the faling:

Theorem 8: Eithertherecannotbe computerthatstronglypredictsall othersthatexist in our uni-

verse, or there is a unique waisally applicable comptéy measure in our unerse.

Similar conclusionshold if onerestrictsattentionto a setof (physically localized)corventional
physicalcomputergqcf. Ex. 1), wherethe light conesin the setarearrangedo allow therequisite
informationto reachthe putatve universalphysical computer Seealsothe discussiorof realities

below.



37

4. DISCUSSION

i) In what sense might eality “be” a computer?

Noneof theanalysign this paperequireshatthepossiblestateof the universeall becharac-
terizableby a single set of often-repeatediery regular patternsencapsulatedh someconcise
“physicallaws”. Theresultsstill hold if eachu 0 U is just an arbitrarytemporally-indeed col-
lection of events,with little to no discernibleregularity relating those events. Broadeningthe
interpretatiorfurther, whereasn a deterministicuniverseu(t) uniquelysetsall u(t' # t), nothingin
our analysisrelies on having that or ary otherkind of structureapply to eachu. Determinism
itself is not neededIn fact, U canbe ary kind of setwhatsoger, evenonewhoseindividual ele-
mentscannotreasonablye viewed as“time-indexed collectionsof events”,regularor otherwise,
or even one whose elements are nettors, and our results still hold.

As mentionedn theintroduction,severalauthorshave speculatedhatthe entireuniverseand
its physical laws are not someunderlyingstructuregoverned by the conclusionsof a computey
but ratherin somesenseare a computeywithout any extraneous'underlying structure”.In light
of thebreadthof the possiblelAJ to which this papers analysisapplies,it is interestingto consider
thisissuewhen“computer”is interpretedo meana physicalcomputerThis useof the mathemat-
ics of physical computationimplicitly differs from the analysisup to now in which U is atime-
orderedcollectionof eventsthatcontainsa computer embodiedn somesubsef its degreesof
freedom.In contrastherel canbe completelyarbitrary andour partitionsareallowedto involve
all of the degreesof freedomof U, not just somesubsebf them.More importantly while we still
identify a particularinstantiationof the laws of the universewith a U, we do not identify whatare
intuitively viewed as the “physical properties”of that instantiationdirectly with that U, per se.
Ratherwe collectively identify all of thosephysical properties — the totality of whatis observ-
ableto humansconcerningheuniverse— asthetriple of (acomputationaansweyto aparticular
(high-dimensionaljjuestion,n responséo a particularinput). The precisesuchtriple is the one

thatis inducedby that U in concertwith the X(.) andY(.) of somephysical computer So herea
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particularﬁ O lAJ by itself, hasno “physicalmeaning’whatsoeer; it is theinput-question-answer
triple thatit inducesyia X(.) andY(.), thatprovidesall suchmeaningWithoutthatassociatedri-
ple, Uis just a point in a set, with no ancillary structure that couldiégnitowith meaning.

This identificationof all physically meaningfulpropertiesof the universel with the single
associatednput-question-answeriple of a computerhassomequite reasonablejualities. For
example thevalueof theinputgivesarestrictionon u. Intuitively this restrictionis akinto aspec-
ification of the physical boundaryconditionsunderwhich the answerto the questionof the uni-
verseis calculatedNotethatthatinput valuenotonly fixesthe universes answeitthough,but also
thevery questionbeingansweredSofor majorenoughchangego theinput, in generatherehas
to beachangean thatquestiorbeingansweredy the universe.Thistoois reasonablentuitively,
the original question is no longer meaningfuegi a lage enough change tAn)

Underthis identification,the full mappingfrom arbitrary inputsto the associatedjuestion/
answelpairsprovidesall possiblepairsof boundaryconditionsandassociateghysical properties
of theuniverses entireworldline. In otherwords,thatmapping — thecomputeiC — constitutes
the laws of the universe.So underthis identificationwe do not needelaborateconsideration®f
grammarsformulationsof logic, the foundationsof mathematicaleasoningetc. to expressthe
laws of theuniverse.Indeed sincewe expressthelaws via a structuratself definedin termsof U
(namely C), the stated and the las goerning them form a self-contained unit.

To formalizethis, we saythata pair ( LAJ C) is areality. Onereality is a copy of anotherif
their computersarecopiesof eachother If two realitiesarecopiesthentheir law-providing com-
putershave identical relationshipsbetweentheir inputs, the questionghey associatevith those
inputs,andthe answerdhey provide to thosequestionsAccordingly, we identify a particularset
of “laws of the universe”with anequwvalenceclassof realitiesthatarecopiesof oneanothereven
if the spacesﬁ of those realities digr.

Saywe aregivenareality ( LAJ C). We cancalculatefor whatsets{Ci} of (perhapson-distin-
guishable)}computersdefinedover 0 the joint outputpartition y1x2x...ig predictableto C. Label
that setof setsy. For ary G, C’s answeris the value of (an associatedntelligibility function of)
the outputsof arny oneof those{Ci} [ x takenall atonce.Next, given somel [ 0 thereis some

subsety( ﬁ) O x of {Ci} that are weakly inducedby C’s associatednput, X( u ). These,intu-
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itively, arethe {Ci} that are both predictableto C and are actually predictedby C for the U at

1x2%.. for a particular{C'}

hand.In acertainsensejf C is the“laws” of thereality, thenhaving Y
[0 x bepredictableto C is a minimal conditionfor sayingthatthe computersn {Ci} are“allowed

by” or “consistentwith” ( 0 C). Having X( G) inducethat{Ci} for the U athandis thena mini-

mal conditionfor sayingthatthe{Ci} are“real”, and“exist” in that U (cf. Thm.8). (It is interest-
ing to speculaten the similarity betweerhaving multiple sets{C i} O x( U ) andthemary worlds
interpretation of quantum mechanics.)

Note that by definition of predictability whethersome{Ci} “exists” is a function of whether
C cancorrectlygive its answerdgor U other than the i ngle one at hand. This relianceon counter
factualU to ascribeexistenceto a{C i} reflectsthefactthatasingle ﬁ, by itself, containsno infor-
mation. Even if U is a collection of high-dimensionateal numbers(e.g., a collection of phase
space positions), it has no meaningeapt in comparison to other such collections.

As a particularexampleof all this, we canhave the elementf {Ci} betheentiresequencef
predictions/obsentionsthat constitutethe mind of someparticularscientist.Doing so, we see
thata reality inducesa setof scientistsgachgivenby a different{Ci}. As anotherexample,the
humanende&our comprisingthefield of physicsconstitutesa computeywith its inputandoutput
partitionsdelineatedy statesof the mind(s)of oneor morephysicists.The goal of thefield is to
have the computercomprisedf thosetwo partitionsbe computationallyequialentto (i.e.,a copy
of) thatof theembeddingeality. The analysisof this paperprovidessomeresultsconcerninghe
possiblerelationshipdbetweerthefield of physicsandthoselaws governingour embeddingeal-
ity. For example,by Thm. 2, if we presumeahatthe mindsof physicistsarepredictableo thelaws
of the unverse, then thosevs are not predictable to yicists.

In additionto resultsconcerninghumanendea&ours,the analysisof this paperalsoprovides
resultsconcerningsetsof mathematicalaws governinguniversesFor example,for finite o( 0 ),
it is oftenreasonabléo have onex valuefor eachﬁ, andsimilarly oney valuefor eachu (thatis
the maximumpossiblenumberof both x’s andy’s). Sincethereare 2°¢ 0) binary-\aluedques-
tions concerningCJ, this meansthe (usually vast) majority of questionsarenotin {y ;}. Sothe
“laws of the universe”cannotposemostquestionsoncerninghatuniverse(cf. Thm.1). Further-

more,by Thm. 3, weknow thattherearequestionsy (potentiallynotin {y ,}) for whichthereis no
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x valuethatcanensurehat C’s answercorrectlygivesq( U ). Therearequestionconcerninghe
universe that we can wer force the lars of the unterse to answer correctly

Theseresultsare particularly suggestie if we recall that obsenation is a form of physical
computationln ability to poseall questionghereforeimplies a “coarse-graining’over the setof
possibleobsenations.It is temptingto try to relatethis to the quantummechanicaluncertainty
principle. Note thatthis physical computatiornf‘uncertaintyprinciple” is differentfrom the Thm.
2-basemnediscussedn thetext. Notealsothatwhereasa particularﬁ indicesauniqueanswefa
particularx valueandyq do not. This is suggestie of theindeterminag of obsenrationin quan-
tum-mechanics— knowing the boundaryconditionsof the universeandthe obsenationalques-
tion being posed to it need not uniquely fix the associated answer

Therearea numberof strongetvariantsof all of thisthatareworthinvestigating.In particular
onecouldaddotherconditionsto the definition of Whether{Ci} “exists”. An examplewould beto
incorporatethe notion of C stronglyinducingintelligibility functionsof the {Ci}. Among other
things,this would allow usto definethe compleity, to the computerconstitutingthe very laws of
the unverse, of answering a particular question.

Anotherexamplearisesn responséo theargumentthatratherthancorveying physicalmean-
ing, the partitions X andY are ultimately just arbitrary “interpretations”of G with no further
physical significance Accordingto this agument,ary otherinterpretation,any othercomputer
definedover the setof possibleﬁ, canbeviewed asjust aslegitimate.When(asin previous sec-
tions of this paper)an electronicworkstationconstitutesAJ, this arbitrarinesssn’t a problem.It is
reasonabléo saythatthe userof the workstationprovidestheinterpretationof G; it is (s)hewho
ultimately deemswhatthe inputsandoutputsto thatworkstation“mean”. A differentuserof the
exact sameworkstationundegoing the exact samedynamicsis free to interpretthat worksta-
tions’s inputs nd outputsdifferently, and therebyconstitutea differentcomputerC. One might
want lessfreedomof interpretationthoughif ratherthana workstationembeddedn a universe
and accompaniedy an interpretinguserin that universe,the computerunderconsiderations
supposedo bethevery laws of thatuniversethemseles.This issuecanbe especiallynettlesome
when we vant to viev those lavs as unique someWwpindependent of aninterpreting “user”.

This objectionis ultimately philosophicalamountingto a semantiaisagreemenver how to
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definewhethertwo realitiesare “the same”,i.e., of how to definewhetherthey have the same
“laws of the universe”. Theview expoundedabove is in favor of a “weak” definition,andsimply

saysthatareality’s laws arenot embodiedn G, but ratherin C. An alternatve “strong” definition,

overcomingthe objectionsraisedabove, addsconditionsto the weakdefinition. Theseconditions
inextricably coupleﬁ andC, via therelationshipbetweerthe questiory answerpairsin C andthe
associatectlementsn LAJ anddefinetwo realitiesto “be the same”if they sharethat property

Formally, we saythat( LAJ C) is computationally equivalent to adifferentreality ( LAJ C")if two

conditionshold. First, thetwo realitiesmustbe copiesof eachother sothattheir computershare
the sameset-\aluedfunctionfrom inputsx to outputs(y, Yq) (asin theweakdefinition). Second,
thetwo computersnustsharethe sameset-\aluedfunctionfrom inputsto thereality’s responsé¢o

the associatedjuestion,i.e., the samefunction from the value of X( u ) to the valueof a =

[Y ( G)]( G).4 (Notethatuseof this strongerdefinitionin nonway negatesthe propertiesnvolv-

ing setsy expounded at the lggnning of this subsection.)

A relatedway of respondingto the objectionis to considerrealitiesthat do not contradict
themseles,i.e., whosecomputersare infallible (seethe discussionin the appendixjust before
Coroll. 1). Requiringthat a physical computerbe infallible if we areto identify it asa universe
certainly seemseasonableMoreover, if the computeran two realitiesare both infallible, then
they arecopiesof eachotherif andonly if they arecomputationallyequialent.Soif we restrict
attentionto infallible computers,the issue of computationalequvalencebetweenrealities is
reducedo theoriginalissueof whethertherealitiesarecopies,andthereis no differencebetween
theweakandstrongdefinitionsof whethertwo realitiesare“the same”.In addition,if C is stable
(seetheappendix)thentheissueof whetherC weaklypredictssomeC' simplifiesto whetherC' is
intelligible to C. Notealsothatfor thecomputersn infallible realities,we cansimplify the defini-
tion of Y to be just a mappingfrom U to guestiongthe associatecnswerseing setautomati-
cally). For all thesereasonsyhentrying to capturethe humanconceptof whatit meangor two
universedo “be thesame”,it seemgeasonabléo concentrat®n equivalenceclasse®f infallible

realities that are copies of one another

i) Relation of Thm. 2 to previous work
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Any resultsconcerningphysical computationshould,at a minimum, apply to the computer
lying on a scientists desk.However thatcomputeris governedby the mathematic®f determinis-
tic finite automatanot thatof Turing machineslin particular theimpossibility resultsconcerning
Turing machinesely oninfinite structureghatdo notexist in any computeron a scientists desk.

On the otherhand,when one carefully analyzesactualcomputershat perform calculations
concerninghe physicalworld, oneuncoversa mathematicastructuregoverningthosecomputers
thatis repletewith its own impossibility results.While much of that structureparallelsTuring
machinetheory muchof it hasno directanaloguan thattheory For example,it hasno needfor
structuredik e tapesmoveableheadsjnternalstatesyead/writecapabilities andthelik e, noneof
which have ary obvious relation to the {as of quantum mechanics and general natsti

Nonethelesghereareanumberof previousresultsin theliteraturethatcanbeviewedasTur-
ing machineanalogue®f Thm. 2. Many authorshave shavn how to constructTuring Machines
outof physicalsystemgseefor example[11, 25] andreferencesherein).By theusualuncomput-
ability results therearepropertiesof suchsystemghatcannotbe calculatedon a physical Turing
machinewithin afixedallotmentof time (assumingeachstepin the calculationtakesa fixednon-
infinitesimal time). In addition, therehave beena numberof resultsexplicitly shaving how to
construciphysicalsystemsvhosefuture stateis non-computableyithout goingthroughtheinter-
mediate step of establishing computationaVersality [14, 26].

Thereare several importantrespectan which the resultsof this paperextendthis previous
work. All of theseprevious resultsrely on infinities of somesortin physically unrealizablesys-
tems(e.g.,in [26] aninfinite numberof stepsareneededo constructthe physical systemwhose
future stateis not computable)ln addition,they all assumeones computingdevice is no more
powerful thana Turing machine Also noneof themaremotivatedby scenariosvherethe compu-
tationis supposedo be a predictionof the future.Nor arethey extendableto allow arbitrarycou-
pling betweenthe computerand the external universe,as (for example) in the processesf
obsenration andcontrol. Thereare otherlimitations thatapply to mary of theseprevious results
individually, while not applyingto eachandevery oneof them.For example,in [26] it is crucial

that we are computingan infinite precisionreal numberratherthana “finite precision”quantity
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like an integer As anotherexample, mary of theseprevious resultsexplicitly require chaotic

dynamics (e.g., [8]). None of these limitations apply to the result of this.paper

iii) Futurework

Future vork includes imesticating the follaving issues:

i) How are the resultsmodifiedif oneis concernedwith probabilitiesof erroneousprediction

rather than just wrst-case analysis of whether there can possibly be erroneous prediction?

i) How mustthe definitionsandassociatedesultsbe modifiedfor analogcomputergsothatone
is concernedvith amountsof errorratherthanwhetherthereis anerror)?Evenif oneis predicting
the future stateof a stochasticsystem solong asthat predictionis falsifiablethe analysisin this
paperapplies(SeethediscussionustbeforeEx. 1.) However how shouldtheanalysishechanged
if whatoneis trying to predictis arandomvariable?Alternatively, whatif (asin theclassicareal
world) U hasa definitevalue, but the outputof the computeris a probability distribution? A pre-
liminary analysisof thisis presentegust beforeLemmal in theappendix.Thereit is proventhat
therecannotbe two computerdoth of which have a “degreeof weakpredictability” (a measure
guantifyingthe accurag of probability distribution output)equalto 1. Justwhatthe upperbound

on such a pair of dgees of weak predictability is unkmo.

iii) Sinceby adoptingthe mary-world interpretationwe can castquantummechanicsas purely
deterministicevolution in Hilbert spacethe presumptiorof determinismn this paperdoesnot a
priori invalidateits applicability to quantumsystemsHowever it is still worth askingwhether
thereary modificationsto the definitionsthat would facilitatethe analysisfor quantumsystems,
especiallyif we adoptthe Copenhageinterpretationlf thereare suchmodifications,thenhow
aretheensuingesultsdifferentfor quantumsystems?As anexampleof sucha modification,one

mightwantto allow sufficient time betweenl andt to notrun into difficultiesdueto the Heisen-
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berg uncertainty principle.)

iv) Find theexactpointof failure — whichaccordingo (1) and(2) mustexist— of theintuitive
argument‘lf the computeris simply a suficiently large andfastHamiltonianevolution approxi-

mator then it can emulate wgrfinite classical non-chaotic system”.

v) As mentionedn theintroduction,thereis alarge bodyof work shaving how to embedTM’sin
physical systemsOnetopic for futurework is following ananalogougprogramin the domainof
physical computationfor exampleby investigating what physical systemssupportcopiesof ary

element of &rious sets of prsical computers.

vi) Exploiting the generalityof our definitions,it may be possibleto apply the analysisof this
paperto the foundationsof mathematicsAs an example,view eachl O U asa “book”. Each
book consistsof a collectionof mathematicapropositionsfor example(thoughnot necessarily)
expressedsstringsover somefixed alphabet.The precisechoiceof U can embodyary desired
restrictionson the setof possiblebooks.The pair of a questionandanswerthenis a choiceof a
subsetof booksin U. For example,sucha pair could be a subsetof booksall of which contain
propositionghatall “make the sameclaim” (i.e., give the sameanswer)concerningsomeformal
mathematicahypothesis(i.e., concerningthe questionat hand).Next, a choiceof aninputto a
computeris arestrictionof attentionto a certainsetof books.Soasan, it couldbearestrictionto
asetof booksall of which adhereo a certainsetof axioms(thatsetconstitutethe premisethatis
input to the computer).Finally, the outputfunctionis a mappingfrom a bookto a questionand
answer For example, U may be a priori restrictedto booksthat containdeclarationf the sort
“giventheseaxioms,thefollowing is true”. In thatcase the outputfunctionis a way of choosing
a single suchdeclarationfrom eachbook. (By allowing only one questionper book, the output
functionmanageso sidestepgheissueof ensuringno contradictionarisesbetweents answergo

various questions for the same underlying book.)
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vii) Whatotherrestrictionsarethereon the predictabilityrelationswithin distinguishablesetsof
physical computersbeyond that they form unionsof DAG’s? In otherwords, which unions of
DAG’s canbe manifestedasthe predictability relationswithin a distinguishableset?How does
this answerchangedependingon whetherwe are consideringsetsof fully input-distinguishable
computersor setsof pairwise-distinguishableomputers?or what computersare therefinite /
countablyinfinite / uncountablyinfinite numbersof levels below it in the DAG to which it
belongs™light suchlevels be gainfully comparedo the corventionalcomputersciencetheory

issue of position in the Chomgskierarcly?

viii) One might try to characterizeéhe unpredictability-of-the-futureesultof Thm. 2 is asthe
physical computationanalogueof the following issuein Turing machinetheory: Canone con-
structa Turing machineM thatcantake asinput A, anencodingof a Turing machineandits tape,
andfor arny suchA computewhatstateA’s Turing machinewill bein afterwill bein aftern steps,
andperformthis computationn fewer thann steps?This characterizatiorsuggestsnvestigating
the formal parallels(if any) betweenthe resultsof thesepapersandthe “speed-up”theoremsof

computer science.

ixX) More speculatrely, the closeformal connectiorbetweerthe resultsof this secondpaperand
thoseof computersciencetheory suggesthatit may be possibleto find physical analoguef
mostof the otherresultsof computersciencetheory andtherebyconstructa full-blown “physical
computersciencetheory”. In particular it may be possibleto build a hierarcly of physicalcom-
puting power, in analogyto the Chomsly hierarcly. In this way we couldtranslatecomputersci-
ence theory into pfsics, and thereby render itysically meaningful.

We might be ableto do at leastsomeof this even without relying on the DAG relationship
amongthe physicalcomputersn a particularset.As anexample,we could considera systenmthat

can correctlypredictthe future stateof the universefrom ary currentstateof the universe before
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thatfuture stateoccurs.The behaior of sucha systemis perfectlywell-defined,sincethe laws of
physics are fully deterministic(for quantummechanicghis statemenimplicitly presumeghat
oneviews thoselaws asregardingthe evolution of the wave function ratherthanof obserables
determinedby non-unitarytransformationf that wave function). Nonethelessby the central
unpredictabilityresultof Thm. 2, we know that sucha systemlies too high in the hierarcly to
exist in more than one cgpn our plysical unverse.

With sucha systemidentifiedwith anoracleof computersciencetheorywe have the defini-
tion of a“physical”’ oracle.Canwe constructfurtheranaloguesvith computersciencetheoryby
leveragingthat definition of a physical oracle?In other words, can we take the relationships
between(computerscience)oracles, Turing machinesandthe othermembersof the (computer
science)Chomsly hierarcly, andusethoserelationshipgogetherwith our (physical) oracleand

physical computers toagnfully define other members of a gsical) Chomsk hierarcly?

x) Canwe thengo furtheranddefinephysical analogue®f conceptdike P vs. NP, andthelike?
Might the halting probability constantQ of algorithmicinformationtheory have an analoguen
physical computation theory?

As anotherexampleof possiblelinks betweencorventionalcomputerscienceheoryandthat
of physicalcomputersis therea physicalcomputeranaloguef Berry’s paradoxNVeakly predict-
ing a partitionis the physical computationanalogueof “generatinga symbolsequencein algo-
rithmic informationcompleity. The coreof Berry’s paradoxs thattherearenumbersk suchthat
no Turing machinecan generatea sequencéaving algorithmicinformation compleity k (with
respectto somepre-specifieduniversal Turing machineU). So for exampleone closelyrelated
issuein physical computatioris to characterizehe physical computersCt andx O O suchthat
acomputerC? whereC! >> C2 andwherelD partitionst, C? weakly predictswhetherc(it | C1) >

x (i.e., such thallx? 0 {x%} such that X( U) =20 Y2, U) = @, whether(r| C*) > X)).

xi) Concernof computersciencetheory andin particularof thetheoryof Turing machineshave
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recentlybeenincorporatednto agooddealof work on thefoundationof physics(e.g.,[36, 37}).
Futurework involvesreplacingphysical computerdor Turing machinesn this work, alongwith

replacing notions li& prediction compbaty for notions like algorithmic compbety.

xii) More generallytherehave beenmary candidateproposedor how oneshouldmeasuréthe

complity” of aphysicalsysteme.g.,thermodynamiaepth[21], logical depth[5], andphysical
compleity [36, 37]. Futurework involveslimning therelationbetweerthesealternatvesandpre-
diction compleity. Particularly intriguing in this regardis logical depth,which is explicitly con-
cernedwith “how much mathematicalvork” is neededo performa computationmeasuredn

numberof computatiorsteps Predictioncompleity is alsoconcernedvith suchwork, only mea-
suredspatiallyin termsof how muchinitialization precisionis requiredto performthe computa-

tion.

xiii) Otherfuturework involvesinvestigatingotherpossibledefinitionsof complexity for physical
computation.Even sticking to analoguesof algorithmic information complity, thesemight
extendsignificantlybeyondthe modificationsto the definition of predictioncompleity discussed
in thetext. For example,onemighttry to definetheanalogueof a bit sequence“length” in terms
of the numberof elementsn {y ¢}, ratherthanin termsof a volume.As anotheralternatve one
might take the (inverse)complity of a computationablevice to be the numberof input-distin-
guishablecomputersthat can predict that device (working in some pre-specifiednput-distin-

guishable set, presumably).

xiv) Thereareatleastseveralwaysthattheformal definitionof areality presentedn Sec.4(i)can
be modified.For example,onecould considerrealitiesthat consistof setsof multiple computers
togethemwith anunderlyinguniverse ratherthanjusta singlesuchcomputerThiswould bringall

the multiple computerunpredictabilityresults(e.g., Thm. 2) directly into play within the funda-

mentallaws of physicsthemseles.(A numberof othertopicsrelatedto realitiesthat are worth
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investicating are presented in Sec. 4(i).)

xvi) Originally we restrictedattentionto intelligibility functionsthat are question-independent
becauseotherwiseno pair of computerscould be mutually intelligible (Thm. 1). However it
turnedout thatevenwith this restriction,no pair of computersanbe mutually predictablg Thm.
2). Accordingly, in Sections3 and4 attentionshiftedto god computerswhich cancorrectlypre-
dict ary computeroutsideof themseles, but are not themseles predictableto suchcomputers.
Given this shift though, Thm. 1 now doesnot provide a reasonto requirethat our intelligibility
functions be question-independenEuture work involves re-analyzingthe issuesaddressedn
Sections3 and4 for full questiondependent intelligibility functions.Otherfuture work involves
re-analyzinghoseissuesfor changesn which of the conditions(i), (ii) and/or(iii) discussedn

the appendix are used to define weak and/or strong predictability

FOOTNOTES

[1] To “remember”,in the presentaneventfrom the past,formally means‘predicting” thatevent
accurately(i.e., retrodictingthe event),usingonly informationfrom the presentSuchretrodiction
reliescrucially on the secondaw. Hence the temporalasymmetryof the secondaw causeghe
temporalasymmetryof memory(we remembethepast,notthefuture). Thatasymmetryof mem-
ory in turn causeghetemporalasymmetryof the psychologicakrrown of time. “Memory systems
theory” refersto the associategbhysicsof retrodiction;it is the thermodynamianalysisof sys-

tems for transferring information from the past to the present. See [31].

[2] More prosaicallyto motivateintelligibility we cansimply notethatwe wishto beableto pose
to a computerC! ary predictionquestionwe canformulate.In particular this meanswe wish to

beableto poseto C! ary questionsoncerningvell-definedaspect®f thefuture stateof C2 Now
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considethaving C? bea corventionalcomputetbasecbn anunderlyingphysical system Thenwe
wantto beableto predictCz’s outputattime t asYz(uT). Thereforein additionto ary otherques-
tionswe might wantto be ableto poseto it, we wantto be ableto poseto C! questionsnvolving
the value Y?(uy) (e.g.,is thatvalueequalto somex;? to somex; or x,? to thatx, or someother
X3? etc.).We wantC! to “understand’y2 sufficiently well to be ableto posebinary-valuedques-

tions concerning it. This is equalent to requiring intelligibility

[3] Especiallyfor non-binarytt, mary other definitionsof prediction compleity besidesDef.
11(ii) canbe motivated.For example,onecould reasonablydefinethe compleity of Ttto bethe
sumof the compleities of eachbinarypartitioninducedby anelemenif 11, i.e.,onecoulddefine
it asZ o C({ uno p, umo p} | C). Anothervariant,onethatwould differ from the oneconsidered
in the text even for binary partitions,is min,nc-1y) [ZXmp 1(X)]. For reasonsf spaceno such

alternatves will be considered in this paper

[4] Notethatthereis alot of structurenot capturedn this definition. As anexample,two realities
can be computationallyequialent even if they differ in their functions mapping X( U ) -
[Y o U )](X'l(xl)), wherex; is thefirst elementof {x} (sothatfor neithercomputerdoesX'l(xl)
vary asthe u argumentto [Y ¢(.)] is varied).Sucha differencebetweerthe two realitiesis akin to

a difference in their responses to cousfstual questions.

APPENDIX: FORMAL DEFINITIONS AND PR OOFS

This appendixpresentghe fully formal definitionsand proofsof the resultsdiscussedn the

text. We start with the follewing definition:

Definition 1:
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i) A (computation) partition is a pair, consistingof a non-emptysetof partition-elementabels
and a single-valued mapping from U into that set. Unless stated otherwise,the mappingis
assumed to be surjeati onto the set.

i) Any questionq [J Q is a partition,whosesetof partition-elementabelsis A, with elementsx
[0 A calledanswersto that question.A(q) indicatesthe A-componentof the pair g. We restrict

attention to Q suchlat least tw elements in A(q) for at least onélQ.

Note thatwe make no assumptiongoncerninghe finitenessof Q and/orary of the {A(q O Q}.
Unlessindicatedotherwise(e.g.,in the definition of questions)ary partitionis assumedo con-
tain at leasttwo elementsNote that the definition of a computerpartition differs from that of a
corventional set-theoretic partition in its inclusion of the partition-element labels.

Given these definitions, we carvndefine plgsical computers:

Definition 2: i) In anoutput partition Y, the spaceof partitionelementabelsis a spaceof possi-
ble“outputs”,{y}, consistingof all pairs{y 4 [ Q,yq U A(yy)}, for someQ andassociated\(.) as
definedin Def. (1). Often, for corveniencewe will write an outputpartitionY explicitly in the
form (Q, Y), whereY(.) is the outputmap Ui [ U- {yqU QYo UA(yg} Also, wewill find it
useful to define an associatguediction) partition, %(.) : U - (A(Yo( U), Yo( U)).

i) In aninput partition, X, the spaceof partition elementiabelsis a spaceof possible‘inputs”,
{x} =A(X).

iii) A (physical) computer consists of the double of an input partition and an output partition

Sincewe arerestrictingattentionto non-emptyQ (cf. Def. 1), {y} is non-empty The surjec-
tivity usuallyassumeaf X(.) andY(.) (cf. Def. 1) is arestrictionon{x} and{y}, respectely. In
thecaseof Y it reflectsthefactthatwe wantthe computeito beableto provide ary of theallowed
answergo ary questionit canpose.(This propertyis perhapghe mostimportantreasonvhy we

don't definethe outputof a computersimply to be a region of lAJ but ratherto be a question-
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answelpairthatdelineatesucharegion.) More generallyfor bothinputsandoutputsfor reasons
of corveniencewe don't wantto allow a value*“officially” to bein the spaceof the computers
potentialinputs (outputs)if thereis no stateof the computerthat correspondso thatinput (out-
put). For example,if thecomputeiis adigital workstationwith a kilobyte of its RAM setasideas
input, it makesno sensdo have theinput spacecontainmorethan (28)1024values,the numberof
possiblebit patternan thatRAM. For anexampleof whenY(.) neednot be surjectve, seeDef. 7

below.

Example 1 continued: Restrictattentionto computergX, Q, Y) whereall g O Q concernthe
samemomentT. Thenyou geta differentphysical computerf you changeary of thetimesO, T,
or T (implicitly settingX(.(), all q(.) O Q, and Y(.), respectiely). In this sensethe electronic
workstationon your deskis actuallya setof mary differentcomputersAll thosecomputersare
(typically) copiesof oneanotherhowever. This differencewith commonvernaculais important

to bear in mind in considering the results presentedivelo
We can nw define a “cop” of a physical computer:

Definition 2 (iv): GivenacomputerC = {X, Q, Y(.)}, definetheimplication in {y} of ary value
x 0 {x} tobethesetof ally 0 {y} consistenwith x, in that0 U O U for which both X( U) = x
and Y(U) =y

v) ThecomputerC? = {X 2, Q?, Y4(.)} is acopy of thecomputerC! = {X 1, Q, Y1(.)} iff Q= Q?,
{x% ={x1} ={x}, andtheimplicationin {y?2} of ary x O {x} is the sameasthe implicationin

{y%} of that x.

As anexample,any computeris a copy of itself. More generallyif V is a bijection over LAJ then

{X(V()), Q(V), Y(V(.))} isacopy of {X(.), Q, Y(.)}, whereQ(V) ={q(V(.)) : g U Q}. Notethat

Q?=0! meansthat{yz} = {y1}. An obvious generalizatiorof Def. 2(v) is to only requirethat
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therebe are-orderingof the individual q2 0 Q2 and/ora bijective transformatiorof someof the
A(g® 0 Q) such that &= Q.

NotethatX(.) maydiffer from X2(.) andthatY(.) maydiffer from Y2(.) in the definition of
acopy of acomputerthetwo computersareallowedto have differentinputvaluesfor thesamed,
andthey areallowedto have differentoutputvaluesfor the samell. (If this werent the casethe
two computersvould beidentical.)Similarly, they canhave different (i for the sameoutputvalues
(and/orinputvalue).Accordingly, a particularpartitioncanbeweakly predictablgo acomputerC
but notto acopy of C. (For example this canoccurwhenthatpartitionis relatedto the outputsec-
tion of C’s copy.)

It is possibleto generalizeDef. 2(v) sothatC! and C2 do not concernthe sameU. The only
placein our definitionthatthe sharingof U arisesis in therequirementhatQ2 = Q. To circum-
ventthatrequirementgivenary countablesetof partitions{rli}, definel‘l({n‘}) astheunionover
all U of thestrings(r( U), 78 ), ...). (Since{1i}is countablesois M({}).) This unionis how
the partitionscollectively divide up U. Thenif we replacethe requirementhat Q? = Q! with the
requirement thaﬂ(Qz) =(QY), we arrize at our desired generalization.

If thereis additionalstructurein the two U at hand,onecanrefinethis generalizatiorof the
definition of a copy. For example,if both U are topologicalspaceghat are homeomorphically
related, one can require that the transformationimplicit in establishingthat (QY) = M(Q?

respects that homeomorphism.

Definition 3: Considera physicalcomputerC = (Q, X(.), Y(.)) anda O-partition T A (notneces-
sarily surjectve) partition mappingAJ into B, f, is anintelligibility function (for ) if
00,000, ™ 0)=m 0)O f(0)=F ).
A set F of such intelligibility functions is antelligibility set for 1t
We view ary intelligibility functionasa questionby definingA(f) to betheimageof U under
f. If Fisanintelligibility setfor mandF O Q, we saythatrtis intelligible to C with respecto F. If

the intelligibility setis not specified,it is implicitly understoodo be the setof all intelligibility
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functions forrt
We saythattwo physical computersC! andC? aremutually intelligible (with respecto the
pair (F1, F2)) iff both Y2 is intelligible to C! with respecto F2 and Y1 is intelligible to C? with

respect to E

Pluggingin, mtis intelligible to C iff L intelligibility functionsf, Llq U {y o} suchthatq=f, i.e.,
suchthatA(qg) = theimageof U underf, andsuchthat0 U 0 U, q(U) = f( U ). Formally, by the
surjectiity of Y(), demandingintelligibility implies that 00" 0 U such that 04 O U,
[Y o G')]( G) = 1f( G). Notethatsincert containsat leasttwo elementsif Ttis intelligible to C, [
Yq U {y ¢t suchthatA(yy) = B, anyq suchthatA(yq) = {0}, andonesuchthatA(yg) ={1}. Usu-
ally we areinterestedn the casewheret is an output partition of a physical computey asin
mutual intelligibility.

In conventionalcomputatiorasin Ex. 1, X(.) specifieghe questionq [1 Q we wantto poseto
the computer In such scenariosmutual intelligibility restrictshow much computationcan be
“hidden”in Y2(.) andX'(.) (Y(.) andX?(.), respectiely) by couplingthem,sothatsubset®f the
rangeof Y2(.) are,directly, elementsn therangeof X(.), without ary interveningcomputational
processing.

We arenow in a positionto formally definewhat it meansfor a computerto make a predic-
tion. First considerthe following three conditionsrelatinga computerC, a partition 1, and an
intelligibility set for, F:

i) Ttis intelligible to C with respect ta Fe., FU {y o};
i) OfOF O x0O{x}that weakly inducesf, i.e., an x such that:
X(u) = x
|

Yol ) = (A, F( L))

iii) Of OF, if thesetof x valuesweaklyinducingf is non-emptythenthereis atleastoneof those

x for which it is further true that XA(l) =x 0 Yy U )="*.
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Intuitively, condition(ii) meanghatfor all questiongy in F, thereis aninput statesuchthatif Cis
initialized to thatinput state,C’s answerto that questionq (asevaluatedat 1) mustbe correct.If
(i) and(iii) bothhold,thenwe cancombinethoseconditionsinto the singlestatementhat] f [
FOx O{x} suchthatX( u)=x O Y(U)=( f( 0)), and() is superfluouslntuitively, in such
asituation,for any questionn theintelligibility set,thereis alwaysaninputthatinduceshecom-
puter to ask and (correctly) answer that question.

Someof theunpredictabilityresultsdo not requirethatall threeconditionshold. In particular
our centralresult, Thm. 2, relieson neither(i) nor (iii); in its strongestormulationit only invokes
condition (i) (asthe proof of it presentedelon makesclear).In contrast,existenceproofsare
strongestvhenwe imposeasmary conditionsaspossible This raisestheissueof which of those
conditionswould mostusefullybeincorporatednto our definitionof predictability As acompro-
mise, herethe term “weak predictability” is interpretedto meanonly that conditions(i) and (ii)

necessarily hold:

Definition 4: Considera physicalcomputerC, partition 1, andintelligibility setfor 1, F. We say
that Tt is weakly predictable to C with respectto F iff F U {y g}, and0 f O F, Ux U {x} that

weakly induces f.

As aformal matter notethatin thedefinitionof predictablegventhoughf(.) is surjectve onto
A(f) (cf. Def. 3), it maybethatfor somex, the setof valuesf( G) takesonwhen U is restrictedso
that X( U ) = x donotcoverall of A(f). Thereadershouldalsobearin mind thatby surjectvity, [
x 0{x}, 0UDO O such that X@ ) = x.

We net define the property that bacomputers’ input functions are independent:

Definition 5: Considera setof n physicalcomputer{C' = (Q', X'(.), Y'(.)) :i =1, ...,n}. We say
{C1} is (input) distinguishableiff 0 n-tuples(x! 0 {x 1}, ..., x" 0 {x"), 0U O U suchthat0 i,
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X'(U) = ¥ simultaneously

We saythat{Ci} is pairwise (input) distinguishable if any pairof computergrom {Ci} is distin-
guishable andwill sometimessaythatary two suchcomputersC! and C? “are distinguishable
from eachother”. We will aIsosaythat{Ci} is amaximal (pairwise)distinguishablesetif there
are no pksical computers Cl {Ci} such that {Ci} is a (pairwise) distinguishable set.

Ouir first resultdoesnot even concernthe accurayg of prediction.It simply stateghatfor ary
pair of physical computerghereare always binary-valuedquestionsaboutthe stateof the uni-
versethat cannoteven be posedto at leastone of thosephysical computersin particular thisis
trueif thesecondcomputeris acopy of thefirst one,or evenif it is thesameasthefirst one.(The
resultdoesnot rely oninput-distinguishabilityof thetwo computers— a propertythatobviously
doesnot describethe relationshipbetweena computerand itself.) This impossibility holds no
matterwhatthe cardinalityof the setof questionghatcanbe posedo thecomputergi.e.,no mat-
ter what the cardinality of {x} and/orQ). It is alsotrue no matterhow powerful the computers
(andin particularholdsevenif the computersaaremorepowerful thana Turing Machine) whether
the computersare analogor digital, whetherthe universeis classicalor quantum-mechanical,
whetheror notthecomputerarequantumcomputersandevenwhetherthe computersaaresubject
to physical constraintslike the speedof light. In addition the result doesnot rely on chaotic
dynamicsin ary mannerAll thatis requiredis that the universecontaintwo (perhapsdentical,

perhaps wildly diferent) plysical computers.

Theorem 1: Considerary pair of physicalcomputer{C' : i = 1, 2}. Either Ofinite intelligibility
setF? for C? suchthatC? is notintelligible to C! with respecto F?, and/orOfinite intelligibility

set F for C! such that &is not intelligible to & with respect to £

Proof: Hypothesizehatthetheoremis false. ThenC! andC? aremutuallyintelligible O finite F

and F2. Now the setof all finite F2 includesary andall intelligibility functionsfor C?, i.e., ary
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andall functionstaking U to a bit whosevalueis setby the valueYz( u ). The setof thosefunc-
tions canbe bijectively mappedo the power set2¥? . SoF2 0 Q1 0 o(QY) = o(2Y?). However
o({y?) = o(Q?), since{y? containsall possiblespecificationsf a ¢? 0 Q2. Thereforeo(Ql) =
0(2Q2). Butit is awaystruethato(2*) > o(A) for ary setA, whichmeansn particularthato(ZQz)

> 0(Q?). Accordingly, o(QY) > o(Q?). Similarly though,o(Q?) > o(QY). Thereforeo(QY) > o(QY),
which is impossibleQED.

Note that Thm. 1 doedrrequire that €and & be diferent computers.

Ultimately, Thm. 1 holds due to our requiring that our physical computerbe capableof
answeringmorethanone questionaboutthe future stateof the universe.To satisfythis require-
mentq cannotbe pre-fixed. (In conventionalcomputationijt is specifiedn the computers input.)
But preciselybecausej is not fixed, for the computers outputof a to be meaningfulit mustbe
accompanietby specificatiorof g; thecomputers outputmustbe awell-definedregionin O.1tis
this needto specifyq aswell asa in theoutput,ultimately, which meanghatonecannothave two
physical computerdboth capableof beingasked arbitrary questionsconcerningthe outputof the
other

Thm. 1 reflectsthefactthatwhile we do notwantto have C’s outputpartition“rigged aheacbf
time” in favor of somesingle question,we alsocannotrequiretoo muchflexibility of our com-
puter It is necessaryo balancehesewo considerationeforeanalyzingpredictionof thefuture.
We do this with the formal property of question-independence.

Recallthatfor ary f thatis anintelligibility function of (the outputpartition of) somecom-
puterC,0 U, U'0 U, Y(U) = Y( U') impliesthatf( U) = f( U'). Sofor suchanf, thejoint condi-
tion [Yqo(U) =Yq(U)] A [Yo(U) =Yq( U')] impliesthatf( U) = f( U'). We considerf’s that

obey wealer conditions:

Definition 6: An intelligibility functionf for anoutputpartitionY(.) is question-independeniff

D/l\.l,/l\,l'D O:
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f(U) =f(u).
An intelligibility set as a whole is question-independent if all its elements are.

We write C! > C? (or equivalently C2 < C1) andsaysimply thatC? is (weakly) predictable to
C! (or equivalently that C* can predict C?) if Y2, is weakly predictableto C* for all question-
independentinite intelligibility setsfor c2. Similarly, from now on we will saythatC2 is intelli-
gible to C! without specificatiorof anintelligibility setif sz is intelligible to C! with respecto
all question-independent finite intelligibility sets fof.C

Intuitively, f is question-independeittits valuedoesnot vary with g amongary setof g all of
which sharethe sameA(q). As an example,say our physical computeris a corventionaldigital
workstation.Have a certainsectionof the workstations RAM be designatedhe “output section”
of thatworkstation.Thatoutputsectionis furtherdividedinto a “questionsubsectiondesignating
(i.e.,“containing”) ag, andan“answersubsection'tlesignatingana. Saythatfor all q thatcanbe
designatedy the questionsubsectiorA(q) is a singlebit, i.e., we areonly interestedn binary-
valuedquestionsThenfor a question-independeffit the value of f canonly dependon whether
theanswersubsectiortontainsa 0 or a 1. It cannotvary with the contentsof the questionsubsec-
tion. In termsof the first of the motivationswe introducedfor requiringintelligibility, requiring
guestion-independeimtelligibility meanswe only requireeachcomputers answer to be readily
intelligible to the other one. We are willing to forego having the questionthat eachcomputer
thinks it's answering also be readily intelligible to the other one.

As a formal @ample of question-independent intelligibilisay our computer has questions q
for which A(q) = B, questiong) for which A(q) = {0}, andq for which A(q) = {1}, but noothers.
Thentherearefour distinctsubsetof U, which mutually cover 0, definedby the four equations
Yo(0)=(B,1),Yp( U)=(B,0),Y( U)=({1}, 1),andY,( u)=({0}, 0).(Thefull partitionY(.)
is arefinemenbf this 4-way partition,whereaghis 4-way partitionneednot have no relationwith

the partitionsmakingup eachq in Q.) So a question-independeimmtelligibility function of our



58

computer is aynB-valued function of which of these four subsets a particﬁulﬁaﬂls into.

Thm. 1 doesnothold if we restrictattentionto question-independeittelligibility sets.As an
example,both of our computerscould have their outputanswersubsection®e a single bit, and
both could have their Q containall four Booleanquestionsaboutthe stateof the othercomputers
outputanswerbit. (Thosearethe following functionsfrom u0 0 - B: Isu suchthatthe other
computers outputbit is 1?20? 1 and/or0? Neither1 nor 0?) Sothe Q of bothcomputerscontains
all possible question-independent intelligibility sets for the other computer

SoDef. 6 allows usto circumvent Thm. 1. As analternatve solution,we coulddefinea ques-
tion-free computer asa pair of aninput partitionandanoutputpartitionwhereeachoutputvalue
y only consistof A(yq) anda (ratherthanyg, A(y), anda). Working with suchcomputersvould
have the benefitof simplifying the analysisIntelligibility in the senseoriginally defined,applied
to a question-freecomputeris exactly equivalentto applyingquestion-independemttelligibility
to afull (question-dependentpmputer Moreover mary of the resultsof this paperstill hold for
guestion-free computers.

The problemwith this alternatve approachis thatthe two partitionsX(.) andY (), by them-
seles,don’t really specifya “computer”in arny senseThey don't specifya meansf associating
answerswith questionsTo addresghis without introducingY g, onemight adda mappingfrom
guestiongo inputsto the definition of a computerHowever onceonedoesthis it is not clearthat
this new definitionof acomputeris ary “simpler” thanour original one.This approachs not pur-
sued aw further in this paper

In generalwe cannothave the x valueof our computerC alwaysuniquelyfix the associated
Yq (i.€.,cannothave the casethat U x, Oy, suchthatX( G) =x0 Yl G) =Yyq)- If it did, thenC
could not predictmostnon-trivial computershat are distinguishabldrom C. For example,say
thatfor a computerC?, 0 y%, O {y %}, A(yZ,) = {x%, andthatYZ( u)=X3u) 0 u.SoC?s
outputsimply equalsits input. Thensincewhatever the choiceof x all x? valuesareallowed (by
distinguishability),it follows thatwhatever the choiceof x, all yzq valuesareallowed. Soappro-

priatechoiceof x cannotmake thevaluey, track (anintelligibility function of) yza if thatchoice
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of x forces a uniquealue y.

Thisis quitereasonabléf Clisto predictC2 correctly theinformationof whatC? s calculat-
ing mustsomehav be corveyedinto CL. Due to input-distinguishabilitythis canonly happerby
Clsimplicitly “observing” what questionC? is answering(ratherthanby having x* reflectx?).
Accordingly, for a fixed x1, Ct mustbe ableto generatdlifferentpredictions,dependingn the
resultsof that “observing”. Hence x! cannotfix the valuequ. (On the otherhand, it is not so
unreasonabléo demandthat the value of x* specifythe valuequ, I.e., demandthatit uniquely
fixes what questionds answering. See Coroll. 1 bel)

Thefollowing exampleestablisheshatthereare pairsof input-distinguishablg@hysical com-
puters{C1, Cz} in which C?is predictableto C1, andin which the question componenof y* is

uniquely fixed by X

Example 2: Q? consistsof a single question,one which is a binary partition of 0 so that
A(Y?( 0)) = B aways.SinceY?(.) is surjectire, theimageof U undery?Z,(.) is all of B. Q has
four elementgyivenby thefour logical functionsof the bit Yza( u ). (Notethesearethefour intel-
ligibility functionsfor C2.) Have X*(.) = Y1,(), sothat{x*} containsfour elementscorrespond-
ing to thosefour possiblequestions:oncerningyza. Next, have Yla( G) = [qu( G)]( G) 0u
0 0. Thenfor ary of thefour intelligibility functionsfor C2, g, Ox* O {x 1} suchthatX( u) = x1
O [AYL(T) =A@ * [YL,(U) =q( )] simply choosex! = g, sothatX'(u) = x* O
qu( U ) = q. Finally, to ensuredistinguishability if thereare multiple x> values,have eachone
occur for at least ong in each of the subgens of U given by the partition X.).

Dueto question-independencege do not needto specinyzq(.). If welike,we couldsetit sothat
y%, is uniquely fied by the alue of ¥, just as is the case fotC

To ensuresurjectiity of Y1(.), we could have X}(.) subdiide eachof the two sets(one setfor
eachvaluey?,) { U0 U:YZ,( U) =y?2,} into four non-emptysubrejions,onefor eachx value.
So (X( U ), Yza( U )) aretwo-dimensionakoordinatesof a setof disjoint regionsthat form a

rectangulamrray covering U. This meansthat U — (XI( ), Y2,( 0)) is surjectve onto{x %} x
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{y za}, sothatfor ary yla andintelligibility function of c?, q, thereis alwaysa valueof x* that

both induces the correct prediction for that function g and is consistent witf?&hat y

The following variantof Ex. 2 establisheshat we could have yet anothercomputerC3 that

predicts & but that is also distinguishable front:C

Example2: Have Q®= QY {x% = {x1}, Y3,() =X3(), Y3, (1) =[Y3,( W) i) 0 4O U, and
have X3(.) subdiide X1(.) sothatall four valuesof x2 canoccurwith eachvalueof xL. In general,
aswe vary over all 4 0 U andthereforeover all (x1, x3) pairs,the pair of intelligibility function
thatCl is predictingwill separatelyary from thosethatC3 is predicting,in suchaway thatall 2*

pairs of intelligibility functions for € are answered correctly for sorne] U.

In addition,we canhave acomputerC*, distinguishabldrom bothC! andC?, whereC* > C1,
sothatC* > C! > C2 We cando this eitherwith C* > C? or not, asthe following variantof Ex. 2

demonstrates:

Example 2": Have Y4(.) = X*(), Y4(U) = [Y4( U))( U) D 00 0, and{x¥ = {y“y} equals
the setof all 2% question-independeiitelligibility functionsfor C. (Therearefour possibley™,;
{{0}, 0),{1}, 1), (B, 0), (B, 1)}.) Ensuresurjectiity of Y*(.) by having eachregion of constant
Y4,( U) overlapeachregion of constanty ( ). ThisestablishethatC*> C*. Distinguishability
would thenhold if X4(.) subdiidesX?(.) sothatall 16 valuesof x* canoccurwith eachvalueof
xL.

In this setup,C2 may or may notbe predictableto C*. To seehaw it maynotbe, considerthecase
where{x?} is a singleelement(so distinguishabilitywith C? is never anissue).Have X*(.) bea
refinemenbf Yza(.), in thateachx” valuecanonly occurwith oneor theotherof thetwo yza val-

. . . N .
ues.Soeachx” valuedelineatesa “horizontal strip” of constantha( u), runningacrossall four

valuesof X1( 0 ). (Since X¥(U) = Yi,(0), and Yi(0) = (Yi(u)(0), Yi(U) =
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(XY ))( ), sospecifyingthevalueof X}( ) specifiesy( i), andeachstrip crossesll four
y', values, as as stipulated abe.)

Now choosethe strip with A(Y (U )) = A(X*( U)) = {0} to have coordinateY?,( U) = 1, and
thestripwith A(Y4q( ﬁ)) ={1} tohave coordinateYza( U ) = 0. In theremainingfourteenstrips,
Y4a( G) is not constantandthereforeis not a single-valuedintelligibility functionof the associ-
ated(constantyalue of sz( ﬁ). In both of thosetwo stripsthough, Y4, ( ﬁ) is the oppositeof

Yza( G). Sono x* valueinducesheidentity question-independeitttelligibility functionof CZ U

~ OUTZ,( ), i.e., no R induces Yo U) = B, Y2( U)). Accordingly C* does not predict&

In otherinstanceghough,both c? andc! arepredictableo C*. To have this we needonly subdi-
vide {x%} and{y 4 into two portions,({x %} A, {y } o), and({x %} g, {y % g), which divide U in two.

Thefirst of theseportionsis usedfor predictionsconcerningC?, asin Ex. 2; eachregion of con-
stantX*( G) is a subsebf aregion of constantX’( G) overlappingbothYza( G). Theseconds
usedfor predictionsconcerningCl, asjust above. It consistsof horizontalstrips extendingover
thatpartof U nottakenup by theregionswith X4 0) O {x%} 5. So{x%} 5 = {y%¢} a containsfour
elementsand{x %} B= {y4q} g containssixteen which meanghat{x} ={y} containstwentyele-
mentsall told. Distinguishabilityis ensuredy having x* take on all its possiblevalueswithin any

subset ofJ over which both %(.) and X(.) are constant.
We nav present the proof of Thm. 2:

Proof of Thm. 2: Given Y(.) and Y2(.), define the functior?f U ) by:
f2(U) = 1if A(YX,( b)) = {o};
PU) = 0if ACYY( 1)) = {1
f2( ) = NOT[Y 1, ( U)]if ACY (1)) =B; and
f2( U ) = 0 otherwise.
Intuitively, this functionis thenegationof Y 'sanswewhenY ''s questioris containedn B. Now

A(f?) O {{0}, {1}, B}, with its precisevaluedependingpn y!. Sinceby constructionf?> doesnot
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varywith Y, U), only with A(Y 14( 1)), this meanshatf? is a question-independeitttelligibil-
ity functionof Y2. Definef! similarly, justwith no negation operationf( U ) = Y2,( U ), when-
ever A(yzq) 00 B, and equals 0 otherwise.

By hypothesis[Ix? suchthatX?( ) =x? O YZ,(U) = (A(f?), f( U)). (Notethatfor that
x% A(YZ,( 1)) O ({0}, {1}, B}) Similarly for x* andf’. Soby input distinguishability O sin-
gle U suchthatat the sametime, Y2,( ) = f2( ) andY1,( U) = f( U). Pluggingin andusing
the fact that both A(YZ%,( U)) O {0}, {1}, B} andA(Y,(U)) O {0}, {1}, B}, we seethat
Y1, (U)=f(U) = Y%, (1) =f2( U) = NOT[Y,( U)]. Thiscontradictionestablishesur result.

QED.

Restatingt, Thm. 2 saysthateitherOfinite question-independenttelligibility setfor C1, FL,
suchthatC! is not predictableto C? with respecto FL, and/orOfinite question-independeitel-
ligibility setfor C2, F?, suchthatC? is not predictableto C! with respecto F%. We canwealenthe
definition of “intelligibility” andstill establisttheimpossibility of having both C1 > C? andC? >
CL. For example,thatimpossibility will still obtainevenif neitherC! nor C? containsB-valued
questionsif they insteadcontainall possiblefunctionsmappingeachothers’valuesof y, onto{0,
1,2} (or morepreciselycontainall suchfunctionsof y,, — cf. the definition of predictionparti-
tion). For pedagogical simplicitysuch wea&ned definitions are notvestigated here.

Notethat Thm. 2 still holdsif we consideldargerintelligibility setsthataresupersetsf F, the
setof all intelligibility functionsof Y. In particular considermodifying the definition of weak
predictability to involve F', the setof all intelligibility functionsof the partitionﬁ - (X( U )s
Y o U ))- Intuitively, this is the setof all (question-independentijtelligibility functionsof the
entirecomputer(X, Y), notjust of its outputpartition. (So “prediction” now meansjn essence,
predictingall aspect®of C.) ThensinceF O F', Thm. 2 still applieswith this alternatve definition
of weak predictability

As mentionedoreviously, Thm. 2 doesnotrely onintelligibility . This reflectsour restrictionto

guestion-independeimmtelligibility functions.Suchfunctionscannot‘see” whatthe contentsof
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some(computefto-be-predicted) y, are. Similarly, condition (ii) doesnot careaboutthe con-
tentsof ary (predictingcomputers) y,. Sothe contentsof y,, in eithera predictingor being-pre-
dictedcomputerare,for themostpart,irrelevant. Accordingly, restrictionson thosecontentshave
few effectsconcerningcomputergredictingeachotherusingquestion-independemnttelligibility
sets.

NonethelessThm. 2 canbe usedto derive anuncomputabilityresultthat doesrely on mutu-
ally intelligibility . To seethis, defineacomputerC to be(Y ;) stableif U g U {y o}, thereis always
anassociatednput thatforcesthe outputquestionto equalq, i.e., if [Ix suchthat X( U )=x0
Yo U ) = g. (Notethatgivenary y, stability canalwaysbeassuredy choosinga sufiiciently fine-
grainedX(.).) In addition,definea computerto beinfallible if its associate@nswersarealways
correctresponsefo its associatedjuestionsj.e., if Y ( G) =Y« G)]( G) 0 Q. (As anexample,
givenary partitionT, thecomputemhich hasa singlequestiongivenby q( U ) =11 G) andwhich

has Y;( U ) =1( U ) is infallible.) Then we hee the follaving:

Corollary 1: LetC! andC? betwo distinguishablenutuallyintelligible computersbothof which

are stable. It is not possible that bothadd @ are infllible.

Proof: Let F? be the setof all questions-independeirttelligibility functionsfor C2. ThenF? O
{y'4. by mutualintelligibility. By stability of Y*, thismeansthat 0 f 0 F?, Ox O {x 1} suchthat
Xy(U)=x0 Yl(u)=*. If C' wereinfallible, this would thenmeanthat Y1 ( U) = (A(f),
f( U)). Sox weaklyinducesf, andmoregenerally C1 > C2. Similarly, C2 > CL. If we now apply

Thm. 2 we get the result claime@ED.

Similarly, onecanproducecorollariesof theresultspresentedbelon by, in essenceeplacingpre-
dictability with infallibility . For reasonsf spacethosecorollariesare not presentecere.Note
thatfor ary stable,infallible computerC, if C'is intelligible to C, thenall threeconditions(i-iii)

considered for defining weak predictability hold.
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As anasidethereareseveralwaysonecangeneralizehe foregoing to the caseof stochastic
scenariosOnestartsby defininga probabilistic partition R asa spaceof partition labelsA(R)
andan associatediistribution Pg(r O A(R) | ﬁ). (Thessituationconsiderecderetofores the spe-
cial casewhereall partitionsaredeltafunctions.)In particular anoutputprobabilisticpartition Y
is onewhere{A(y)} is thesetof all pairs{q [l {y 4}, a [J A(q)} for somesetof probabilisticpar-
titions {y o}. An exampleis a workstationwhoseoutputanswera is the specificationof oneof a
setof candidateGaussiardistributions concerningthe externalworld, i.e., a GaussiarP( u | o).
Given alsoa prior distribution P(0), we canexpressthat workstations outputasa probabilistic
questionP(a | G) togetherwith a particularassociate@nswer Anotherexampleis wherel is a
wavefunction,anda probabilisticpartitiongivestheresultsof a Hermitianoperatorappliedto that
wavefunction.

For simplicity assumehatthefull joint distributionover 0 andall partitionlabelsis specified,
andthat P( u ) is nowhere-zeraver its domainof definition.Now ary actualphysicalcomputers
stateis specifiedn u for aclassicauniverse andthesames truein the quanturmaseassumingﬁ
is an eigenstateof the operatorof a humanobservingthe computers output. Accordingly, the
input and output probabilistic partitions of a probabilisticcomputer(i.e., P(x O {x} | ﬁ) and
PiyUO {y} | ﬁ), respectiely) aredeltafunctions,althoughthe partition Y ¢ is not onein general.
Two probabilisticcomputersC! andC? are (input) probabilistic distinguishable if 0 x* O {x 1}
and ¥ 0 {x?}, O U such that P( )= 0, P(¢ | U) 0, and P(X | U) # 0.

As before,anintelligibility functionis a “translation” mappinga partition’s possibleoutputs
into B. Formally, a probabilistic intelligibility function ® of a (probabilistic)partition R with
labelsr is a probabilisticpartition having A(®) O B where[Ja single-\aluedfunctionh: R - B
suchthatP( 0 A(®) | U) = [dU (¢, h(n) P(r| U). (A question-independeprobabilisticintelli-
gibility function of an output partition Y simply hash(y) dependonly ony,) We definethe

degree of weak predictability of a probabilisticpartition R to a probabilisticcomputerC for an
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intelligibility set F as

Erc = MiNgmax, [d8 Piy(alIN) o 8(9. b) Po(@]0) Poyr(OUT ;=(A(f), b)[0) .

Intuitively, this is the minimax probability of €answer (b) agreeing with's answer).

Note thateg.c = 1 impliesthatg=b [ U suchthat P( U | X) is non-zero(for the maximizing
x). Now sinceoutputpartitionsaredeltafunctions,if R is the outputpartition of a computerC’,
thenall ® [0 F aredeltafunctions.In otherwords,thoseintelligibility functionsaresingle-valued
functionsfrom lAJ to B (asalwaysarethe partitionsX andY). Accordingly having @ necessarily
equalb reducego the corventional(non-probabilisticdefinitionof weakpredictability andThm.
2 applies.This provesthatit is impossibleto have two distinguishablerobabilisticcomputersCt
and € such thatcs.c2 = gc2.c1 = 1.

Returningto the caseof non-probabilisticpartitions,we now presenta resultthat is often
handyin working with systemameetingour definition of weak predictability (i.e., conditions(i)
and(ii)). Firstnotethatfor any partitiont containingatleasttwo elementsthereexistsanintelli-
gibility functionf for twith A(f) = B, anintelligibility functionf with A(f) = {1}, andanintelli-
gibility function f with A(f) = {0}. By exploiting the surjectvity of output partitions, we can
extendthis resultto concernsuchpartitions.This is formally establishedn the following lemma,

which holds whether or not we assume partitions are binary:

Lemma 1: Considera physicalcomputerCL. If Dary outputpartitionY2 thatis intelligible to C1,
thenO gt O Q! suchthatA(ql) = B, agt O Q! suchthatA(ql) = {0}, anda g’ O Q! suchthat
A@") = {1}.

Proof: Since{y?} is non-empty{y?s} is non-emptyPick someq’ O {y?(} having at leasttwo
elements(By definitionof physicalcomputerthereis atleastonesuchq .) Constructary binary-

valuedfunctionf? of a 0 A(q") suchthatthereexistsat leastonea for which f%(a) = 0 andat
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least one for which f2(a) = 1. Define an associatedfunction f2( U ) = f2(Y2,(U)) if A
(Y2(U)) = A(@), 0 otherwise By the surjectiity of YZ(), 0 a O A(q"), O'U suchthat both
Y2,(U) =g andY?( U) = a. Therefored U suchthatf 2( U) = 1,and0 U suchthatf 2( t) = 0.
This establishedy constructionthatthereis a question-independeittelligibility functionof C?
thattakeson boththevaluel andthevalue0, f 2. So by our hypothesisthatC2 is intelligible to C*
with respectto ary question-independemmtelligibility function of C2, we know thatf? O Q.
Moreover, viewedasaquestionA(f*Z) = B. So,we have establishethatQ* containsabinaryval-
ued function.

Next, note that the function O U - 1 is alwaysa question-independeimtelligibility function
of C?, asis thefunctiont 0 0 - 0. Again usingsurjectvity, we seethat A for thesetwo func-

tions are {1} and {0}, respectely. QED.
We nav present proofs of some other results presented in the main te

Proof of Coroll. 2. Hypothesizethatthe corollary is wrong. Definethe compositedevice C* =
NH) =Nt Xi(), QY Y(). Since{C'} is fully distinguishableX(.) is surjectie. Therefore
C" is a plysical computer

Sinceby hypothesisC" is intelligible to C™, Oy"™, suchthatA(y";) = B. Also, sinceC"2
>C™L Ox"2 0 {x"? suchthatO U O O for which A(Y™,(T)) =B, X" 4 ) =x"2 O
y™2.(U) = Y™, (U). lteratingand exploiting full distinguishability O (x, ..., X9 suchthat
0 uD0 OforwhichA(Y™ (1)) =B, (XX ), . X" u) =, ... x"A) 0 Y (L) =YX u) =
Yy ﬁ). The sameholdswhenwe restrict U sothatthespaceA(Y”'lq( ﬁ)) ={1}, andwhenwe
restrictu so that A(Y-1,( 1)) = {0}.

Sinceby hypothesisC” is intelligible to C™1, andsinceX"(.) is surjectize, this resultmeans
thatC" is predictableto C". Cornversely sinceC" > C! by hypothesisthe outputpartitionof C” is
predictableto C", andthereforeC” is. Finally, since{Ci} is fully distinguishableC” andC" are

distinguishableThereforeThm. 2 applies,and by usingour hypothesiswe arrive at a contradic-
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tion. QED.

Proof of Thm. 3: Assumeour corollary is wrong,andsomecomputerC is predictableto itself.
Sinceby definition predictabilityimplies intelligibility, we canapply Lemmal to establishthat
thereis aq U {y ¢}, d', suchthat A(q’) = B. Thereforeone question-independemttelligibility
functionof C is thefunctionf fromu 0 U - B thatequalsl if A(Y ¢ G)) =B andy y( G) =0,
andequalsO otherwise Thereforeby hypothesisx 0 {x} suchthatX( U)=x 0 A(Y 4 U))=B
andY,( U) =f( U). Butif {A(Y 4( U))} = B, thenf( U) = NOT[Y 4( 0)], by definition of f(.).
SinceX is surjectve, this meanghatthereis atleastonet 0 0 suchthat{A(Y G))} =B and

Y4( U) = NOT[Y 4( U)]. This is impossibleQED.
For analyzing god computers the fallmg definition is useful:

Definition 7: Considera pairwisedistinguishabl&et{ci} with godcomputerCL. Definethe par-
tittonsY™ (uo 0) = (Yiq><j (U), Y2 (0)), whereeachanswemapy b9 (U) = (Y1, U),
Y2( U)), and eachquestion[Y iqxj (U)] = the mappinggivenby U' O 0 - ([qu( ),

[Y2,( 0)I(u')). Then & is omniscientif Y 23*is weakly predictable to'C

Intuitively, Y™ is just the double partition (Y'(.), YI()) = ((Y'4(), Yia(), (), Yia(), re-
expressedo bein termsof asinglequestion-aluedpartitionanda singleanswesrvaluedpartition.
To motivatethis re-expressionfor any two questionsf 0 Q' anddg O Q) letq' x ¢/ betheordered
productof the partitionsqi and qJ it is the partition assigningto every point 0' 0 U the label
(g'( U), d( U)). Thenif Y'y( U) is thequestiong' andY!y( U) is the questiond, Yi’g (U)isthe
questionqi X qJ Yixg( is definedsimilarly, only with one fewer levels of “indirection”, since
answercomponentf output partitionsare not themseles partitions (unlike questioncompo-
nents).Note that even thoughary Y'(.) and Y!(.) areboth surjectire mappings,Y"™ neednot be

surjective onto the set of quadruples {gQ', d 0 Q, a' 0 AQ"), ol O AQ)}.
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Corollary 3: Considerthreepairwise distinguishablecomputersCl, C2, C3, wherell g° O Q°
suchthatA(q3) [J B. AssumethatC! is an omniscientcomputerandthatC? is intelligible to c3.
Finally, assumdurtherthatnot only that C®s outputcanbe ary of its possiblequestion-answer
pairs,but alsothatfor ary of its questionsfor ary of the associategbossibleanswersthereare
situationswherethatanswers correct(sothat C? shouldleave C¥'s answeralonein thosesitua-
tions). (Formally, this meansthat 0 pairs(g® 0 Q% a® 0 A(g®), DU O O suchthatbothY3,( )
=q®andg®( ) = a3 i.e, [Y3,( U)]( ) = a3) Thenit is notpossiblethatD U0 0, YZ,(u) =

Lif [Y3,(U)I(Uu) = Y3, ( u), 0 otherwise.

Proof: Hypothesizethat the corollary is wrong. Constructa compositedevice c%3, startingby
having X23(.) = Y3,(), @3 = Q3 and Y#3()) = Y3,(.). Next definethe question® by the rule
B( U)=NOT[Y3,(0)]if Y2, ( U)=0,8( U)=Y3,( U) otherwise(N.b. no assumptioris made
that® O Q%3) To completethe definition of the compositecomputerC?3, have Y23,( 1) =
o( ).

Now by our hypothesis[] uo 0, o( ﬁ) = [Y3q( ﬁ)]( ﬁ). By thelastof the conditionsspeci-
fied in the corollary, this meansthat 0 (¢?2 0 Q%3, a22 0 A(q%®)), O U suchthatY23,(U) =
?3and Y23 (U) = 023 SoC?3 allows all possiblevaluesof {y 23}, asa physical computer
must.Dueto surjectiity of Y3, it alsoallows all possiblevaluesof the space{x 3. To complete
the proof that C2-3 is a (surjective) physical computer we must establishthat Y23,( U ) O
A(Y23,(0)) 0u O 0. To do this notethatif for exampleA(Y23,( 1)) = A(Y3(u)) = {1},
thensinceit is awaysthe casethatthe Y2-3,( 1) = [Y23,( U)]( u) = [Y3,( WI( U), YZ3,(U)
= 1. Similarly Y23, U) O A(Y23,( U)) whenA(Y 23,( 1)) ={0}. Finally, if A(Y23,( 1)) =B,
then the simpledict that Y¥3,( U) O B always means that3%,( u) O A(YZ3,( ).

SinceC! is intelligible to C2 and Q% = Q3, Cl is intelligible to C?*3. Moreover, given ary
questiong?3 O Q% 3, Dassociated?3 0 {x23} suchthatd U O O for which X234 ) = x23

Y23 U) = g3 But aswasjustshawn, Y2-3,( ) = ¢?3( U) for that U. ThereforeCl is predict-
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able to @3

Next, sinceC! is omniscient,Y 23 is intelligible to CL. Thereforeary binary function of the
regionsdefinedby quadruplegA(Y 2( U)), A(Y3,( 1)), YZ5( U), Y3,( 1)) is anelementof Q.
Any single suchregion is wholly containedin one region definedby the pair (A(Y2'3q( u ),
Y23,( U)) though.Thereforeary binary function of the regionsdefinedby suchpairsis an ele-
mentof QL. ThereforeC2-2 is intelligible to QL. Similarly, the valueof ary suchbinary function
mustbegivenby Y1,( U) whenever X1( U) equalssomeassociatea’. SoC?2is predictableto
cl.

Finally, sinceC! and C2 areinput-distinguishableso are C! and C%3, andthereforeThm. 2

applies. This establishes that oypbthesis results in a contradicti@@ED.

Similarly, we cannotarrangeo have two computerse “anti-predictable’to oneanotherThis

is mentioned in the mainxeas Coroll. 4 of Thm. 2. The proof of this result is as fedip

Proof of Coroll. 4: By assumptiorC’ andC? aremutuallyintelligible. Sowhatwe mustestablish
is whetherfor both of them,for all intelligibility functionsconcerninghe otherone,thereexists
an appropriateatue of x such that that intelligibility function is incorrectly predicted.

Hypothesizahatthe corollaryis wrong. Thenl question-independeiritelligibility functions
for C1, 1, Ox? O {x% suchthat X%( U ) = x? implies that [A(Y %( U)) = NOT[AGFH]] ~
[Y2,(U) = NOT[f}( U)]]. However by definition of question-independerittelligibility func-
tions, givenary suchf!, theremustbe anothemuestion-independeitttelligibility functionof C?,
f3, definedby f3(.) = NOT(f}(.)). Therefored x? O {x?%} suchthat X3( U ) = x2 implies that
ACY (1) = A ~ [YZ, (W) =)

This NOT(.) transformatiorbijectively mapsthe setof all question-independenttelligibility
functionsfor C? ontoitself. Sincethatsetis finite, this meansthatthe imageof the setunderthe
NOT(.) transformatiornis the setitself. Thereforeour hypothesismeanghatall question-indepen-

dentfunctionsfor C! canbe predictedcorrectlyby C? for appropriatechoiceof x? O {x2}. By
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similar reasoningye seethatC* canalvvayspredictC2 correctly SinceC! andC? aredistinguish-

able, we can ne apply Thm. 2 and arre at a contradictiorQED.

Recallthattherearethreeconditionsrelatedto weakpredictability andfor pedagogicasim-
plicity we settledon two for our formal definition of the term (cf. discussiorprecedingDef. 4).
The situationwith strongpredictabilityis closelyanalogouslits formal definition involving two

conditions is as folls:

Definition 8: Considera pair of physical computersC! and C2. We saythat C?is strongly pre-
dictable to C! (or equivalentlythatC! can strongly predict C?), andwrite Ct >> C? (or equiva-
lently G2 << CY) iff:
i) C? s intelligible to C;
i) O question-independent intelligibility functions fof,@t, O x? O {x 2},
O x 0 {x 1} that strongly inducesthe pair (4, x?), i.e., such that:
XL(u)= x
0
Y2 ) = (A@), g ()]~ [XA(U) =%,

We now presentthe proofsof someof the fundamentatheoremsconcerningstrongpredict-

ability:

Proof of Thm. 5: To prove (i), let f be any question-independeimtelligibility function of 1. By
Lemmal, the everywhere0-valuedquestion-independeiritelligibility functionof 1tis contained
in Q%, andsinceC! > C?, theremustbeanx* suchthatX( ) =x* O Y14( U) = 0. Thesameis
true for the everywherel-valuedfunction. Thereforeto prove the claim we needonly establish
thatfor every question-independenttelligibility functionof m, f, for which A(f) =B, f O Q, and

thereexistsanx® suchthatX*( U) =x* O Y,( U) = f( U). Restrictattentionto suchf from now
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on.

Definea question-independeittelligibility functionof C?, 12, suchthatA(1%) = B, andsuch
thatfor all U for which A(Y o( 1)) = B, 1( i) = Y2,( U ). (Note thatsinceC? > T, thereboth
exist U for which Y2,( 1) = (B, 1) and U suchthatY?,( U) = (B, 0.) Now by hypothesisfor ary
of thef we areconsidering[Ix% 0 {x %} suchthatX®( t)=x% 0 Y2,( 1) = (B, f( U)). However
the factthat Ct >> C? 0 Ox! O {x4} suchthatX*(U) =x! O X2 U) = x% andsuchthat
YL(U) = (A3, 1%(U)) = (B, 13( ). SinceX*( U) = x% for sucha U, A(Y%,( 1)) =B, and
thereforel?( ) = Y2,( U). SoY2,( &) for sucha i equalg(B, Y2,( U)). Sofor thatx, Y1,( )
= (A, f( 1))

This establishegi). The proof for (i) goessimilarly, with the redefinitionthat xlf fixesthe

value of ¥ as well as ensuring thaf)( U ) = (A(f), f( U )). QED.

Proof of Thm. 6: Chooseary x2. For ary question-independeinttelligibility functionof yzp, f,
theremustexist anx’; [ {x %} thatstronglyinduces<? andf, sinceC! >> C?. Labelary suchx! as
xX (x2 beingimplicitly fixed).Sofor any suchf, { U: XY U)=x%} O{ U: X% U) = x%}. How-
ever since{yzp} is notempty thereareat leasttwo question-independeinitelligibility functions
of y2,, f1 andfy, whereA(fy) # A(f,) (cf. Lemmal). Moreover, theintersectior{ U: X(U) =
xL Jnd u: X3 0) =x',} = 0, sincethesetwo setsinducedifferentA(y'y) (namelyA(f,) and
A(f5), respectiely). This meansthat{ U: Xt )=x%} 0 { U:X?(U )=x?. Ontheother
hand,for the samereasonstheremustalsoexist anx2 thatstronglyinducesxlfl. Thereforedx?
suchthat{ U: X% U )=x?} O{ U: XY 0 )=x%} Sof U:X¥(u)=x?} 0 { U:X*(U)=

x4}, This is not compatible with theét that X(.) is a partitionQED.
The following theorems wolve plysical computation analogues of TM theory

Theorem 4: Given a set of pysical computers {§, [1C! 0 {C'} such that C? 0 {C'},
i) C?is intelligible to C;
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i) 0?0 Q% Ox 0 {xY suchthat ¥(G)=x0 Yl (lU)=1ifq¥ U)=
Y2,( 0).

Proof: ChooseC? suchthatY2(.) = Y(.). (If needbe, to do this simply chooseC? = CL.) Thenin
particular Y14(.) = Y24 (.). Now sinceC? is intelligible to C* by hypothesispy Lemma1l Oq' O
Q! suchthatA(qY) = {0}, andthereforedq? 0 Q? suchthatA(gq?) ={0}. Forthatg? Yi,(u)=1
iff 0 = Yla( U ), which is impossibleQED.

We naw present definitions needed to analyze prediction coqtple

Definition 10: For ary physical computer C with input space {x}:

i) Givenary partition i, a (weak) prediction input set(of C, for 1) is ary sets [ {x} such
that both every intelligibility function of 1t is weakly inducedby an elementof s, andfor ary
propersubsedf s atleastonesuchfunctionis notweaklyinduced We write the spaceof all weak
prediction input sets of C fatras CY(m).

i) Givenary otherphysical computerC' with input space{x’} for which the setof all ques-
tion-independenintelligibility functionsis {f'}, a(strong) prediction input setof C, for thetri-
pleC', =" 0O {x7}, andf' O {f'}, isarny sets ] {x} suchthatbotheverypair(f Of', x'0=")is
stronglyinducedby a memberof s, andfor ary propersubsetof s at leastone suchpair is not
stronglyinduced.We write the spaceof all strongpredictioninputsets(of C, for C', =', andf ') as

clc, =, 1.

Definition 11: Given a plgsical computer C and a measugeader 0:
i) DefineV(= O {x}) asthe measuref the setof all ao 0 suchthat X( G) 0 =, anddefinethe
-In[V(2)];

i) Given a partition 1t thatis predictableto a physical computerC, definethe prediction com-

length of = (with respect to X(.)) a§=)

plexity of it (with respect to C)(1t| C), as migg -y [1(P)]-
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Proof of Thm. 7: Given any intelligibility function f for 1, consider any xzf 0 {x% that weakly
induces f, i.e, such that XX(U) = x% O Y2,(U) = (A(f), f( U)). (The andlysis will not be
affected if Ttis an output partition and we restrict attention to those intelligibility functions for 1t
that are question-independent.) Since C! >> C2?, we can then choose an x%, X(x%), to strongly
induce xzf together with any question-independent intelligibility function of yzp. (Indeed, in gen-
eral there can be more than one such value of x* that induces xzf.) So in particular, we can choose
it so that the vector Y1, U) = (A(1%), 12a¢ny( U)) for any possible function 12 ). Now for that
x%, X?( ) = x%, and therefore A(YZ,( U)) = A(f), which meansthat 125 1) = Y%, ( U), which
in turn equals f( U') for that x2. So O U such that X*( T) = X*(x%), YL,(U) = (A(f), f( U)). In
other words, X(x%) weakly induces in C* the same intelligibility function of Tt that x% weakly
induces in C2. However since X( ) = X%(x%) O XZ%( U) = x%, the set of U O U such that
XY ) = X%(x%) is O the set such that X2( U ) = x%. This means that |(X%(x%)) = |(x%). (Our
task, loosely speaking, is to bound this difference in lengths, and then to extend the analysis to
simultaneously consider all such question-independent intelligibility functionsf.)

Take {f;} to bethe set of all intelligibility functions for Tt By the preceding construction, Ttis
weakly predictable to C' with a (not necessarily proper) subset of { X' (xzfi)} being a member of
(Y™ (). Now any member of (CY)™(r) must contain at least three digjoint elements, correspond-
ing to intelligibility functions g with A(qu( U )) =B, {0}, or {1}. (See the discussion just before
Lemma 1.) Accordingly, the volume (as measured by dy) of any subset of { X (xzfi)} 0y
must be at least 3 times the volume of the element of {lei (xzfi)} having the smallest volume. In
other words, the length of any subset of {X* (xzfi)} 0 (€Y (r) must be at most -In(3) plus the
length of the longest element of { X*;(x?)} . Therefore c(rt| C) < maxg; [I(X,(<%:)] - In(3).

Now take {x%} to bethe setin (€2 (m) with minimal length. {x%]} hasat most o(2") disjoint
elements, one for each intelligibility function of Tt Using the relation min;[g;] = -max; [-g;], this
means that c(rt| C?) = -In[o(2"] + miny, [I(x%)]. Therefore we can write c(1t| C1) - ¢(rt| C?) <

IN[0(2™] - In(3) + maxq, [I(X% (x%))] - ming [1(x%)]. The fact that for all x%, X?( () = X% O
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A(Y2,( 0)) = A(f) O B completes the proof of (i).

To prove (ii), notethatwe canalwaysconstruconeof thesetsin (Cl)_l(T[) by startingwith the
setconsistingof the elementof {X 1fi (xzfi)} having the shortestength,andthensuccessiely add-
ing otherx! valuesto thatset,until we getafull (weak)predictionset. Thereforec(rt| C1) < ming,

I(lei(xzfi)). Using this bound rather than the oneoiming -In(3) establishes (IQED.

Notethatthe setof Z [J B suchthat [C2]'1(Z) exists mustbe non-emptysinceC2 > 11 Simi-
larly, C2 > T meansthat thereis a U suchthat A(Y ¢( U )) =Z 0OB. The associatedzz always
existsby constructionsimply definel2,( U) = Y2,( ) O GsuchthatA(Yq( u)) = Z, andfor all
otherﬁ, IZZ( u ) = x for somex [0 Z. Thereforethe extremain our boundsare always well-

defined.
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